

[image: _images/mTree_logo.png]

Agent Based Simulation and Experimental Economics Software

GMU_CSN [https://github.com/gmucsn] |
Github [https://github.com/gmucsn/mTree] |
Issues [https://github.com/gmucsn/mTree/issues] |

Overview

Welcome to the mTree documentation! mTree is a Agent-Based Modelling software in python. If this is your first time interacting with
mTree follow the Novice path mentioned below in order to properly install and test the software.

Novice Path

Do this step by step

	Installing Docker Desktop

	Installing mTree

	Quick Start Guide

	Cloning mTree_auction_examples

	Running mTree_auction_examples

	mTree_auction_examples container setup

	mTree Container Setup

	Running mTree_auction_examples container

	Start

	Open Shell

	Common Value Auction

	File Structure

	Running common_value_auction simulation

	How to know your simulation has finished running?

	Simulation Results

	Checking for Errors

	Quitting

	Conclusion

Contents

	Installation
	Installing Docker Desktop

	Installing mTree

	mTree Container Setup

	Quick Start Guide
	Cloning mTree_auction_examples

	Running mTree_auction_examples

	Quick Build

	Reference
	Theory of Operations

	messages

	Actor Description

	config folder

	address book

	Logs

	Error Handling

	mTree Simulation State

	Contribute

	Learning Paths
	Tatonnement

	Sealed Bid Auction

	Ascending Price Auction

	Descending Price Auction

	Common Value Auction

Indices and tables

	Index

	Module Index

	Search Page

Installation

In order to run mTree we need to install Docker Desktop [https://www.docker.com] first.

Installing Docker Desktop

The links for Docker Desktop installation for different os can be found below.

	Download Docker Desktop [https://www.docker.com/products/docker-desktop]

Tip

If you have a Windows machine and end up at the following prompt after installing Docker Desktop -

[image: _images/installation_wls_kernel_update.png]

WLS 2 Installation Incomplete

Visit the link and only complete Step 4 from the webpage

After completing the Docker Desktop installation, we can start installing mTree

Installing mTree

You can install mTree by pasting the following code in your Command Prompt, PowerShell or Terminal.
However, make sure to check for the latest version of mTree here [https://hub.docker.com/r/mtree/mtree/tags],
in case the one below is out of date.

docker pull mtree/mtree:1.0.11c

After pasting and running the command in your Command Prompt, your screen should look
like something like this

[image: _images/installation_mTree_docker_pull.png]

Your Command Prompt/Terminal/PowerShell after docker pull command

Note

If you get an ERROR message in your Command Prompt try running the command after
starting the Docker Desktop App and see if that helps.

Note

It is important that your Command Prompt is based in the same virtual environment where you
have Docker Desktop installed in order for the docker pull command to work.
If you don’t understand what this means, you don’t have to worry about this.

mTree Container Setup

Tip

If you don’t have an mTree simulation that is ready to run or you are new to mTree, visit
the Quick Start Guide before you do this next step.

Open Docker Desktop app on your computer and click
Images on the sidebar.

[image: _images/mTree_image.png]

Images Section on the Docker Desktop App

You should see the mTree image we just downloaded through docker hub in the previous step.
In the next step, we are going to run this image within a small virtualization of the os called a
container. We can create our docker container by clicking RUN on the mTree image.

After that you should see the following window. Follow all the steps, in the image below, before moving
on to the next step.

[image: _images/mTree_container_setup.png]

mTree container setup

Once all the instructions in the above image are completed, you should click Containers/Apps
on the sidebar. After hitting Containers/Apps, you should see the following container -

[image: _images/installation_unstarted_container.png]

Container/Apps Section on the Docker Desktop App

Container Options

Your container comes with several options that can be executed to change its
state.

Start

Click START to start your container.

[image: _images/start_button.png]

START button

A running docker container should have a green symbol on the left side.

[image: _images/started_container.png]

A running docker container

Stop

You can stop running your container by pressing STOP button

[image: _images/stop_button.png]

STOP button

Restart

You can restart your container by pressing the RESTART button

[image: _images/restart_button.png]

RESTART button

Delete

If you want to delete the image, you can press the DELETE button

[image: _images/delete_button.png]

DELETE button

Open Shell

Once your container is running, you should click CLI button to open the Command Prompt/ shell
linked to your container.

[image: _images/shell_button.png]

CLI button

The shell produced by Docker should look similar to the following -

[image: _images/container_command_prompt.png]

docker shell

Quick Start Guide

In this Quick Start Guide, we are going to run a simple mTree simulation
while giving an overview of key components that are necessary for mTree to execute
without error. The goal of this guide is to show you how to run an mTree simulation from
start to finish and point out the vital indicators that convey a simulation has run properly.

In order to complete this Quick Start Guide, you would need to the following installed on
your computer before you can begin

	Docker Desktop - The quick start guide assumes that you have finished Installing Docker Desktop

	Latest mTree Image - This should be covered in the Installing mTree section.

	
	Git - We are going to use git to run a simple mTree simulation later in this section. A simple way to check if you have git installed is to run git --version in your Command Prompt/ Terminal/ PowerShell.
	
	
	Mac Users
	
	If your Terminal says it doesn’t recognize the command, which is very unlikely, visit the Git Download for macOS [https://git-scm.com/download/mac] website to download git.

	You’ll have several options on how to install git, however, it is recommended to use homebrew route, check out this git homebrew download video [https://www.youtube.com/watch?v=ZM3I16Z-lxI] on how to do this.

	
	Windows Users
	
	If it doesn’t recognize the command, suggesting you don’t have git, visit the Git Download for Windows [https://git-scm.com/download/win] website and follow the directions highlighted in this windows git download video [https://www.youtube.com/watch?v=4xqVv2lTo40] .

	VSCode - We recommend using an Integrated Development Environment (IDE) to edit and view mTree simulation code. Although, VSCode [https://code.visualstudio.com] is versatile and great, however, any IDE of your choice should also work.

Cloning mTree_auction_examples

We are going to clone the mTree_auction_examples [https://github.com/nalinbhatt/mTree_auction_examples.git] repository and run one
of the examples to make sure mTree is running properly.

Open your Command Prompt and navigate to an apporpriate place within your file system
using the cd command and run the following code. If you have not used Command Line before
you can check out the tip below or you could simply run the following code
and it will create an mTree_auction_examples folder in your home directory where the Desktop folder
exists.

git clone https://github.com/nalinbhatt/mTree_auction_examples.git

This will create an mTree_auction_examples folder at your specified
location.

Tip

If you are new to command line you can check out the following links on
how to navigate your file system -

Terminal for Beginners [https://medium.com/@grace.m.nolan/terminal-for-beginners-e492ba10902a] (Macs)

A Beginner’s Guide to the Windows Command Prompt [https://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/] (Windows)

Although, the following resources provide a great background which might be helpful later, nevertheless,
for these next few steps, you only need to know how the cd command works.

Running mTree_auction_examples

In order to run this simulation we need to create a docker container using
the Docker Desktop app that we downloaded in Installation section.

mTree_auction_examples container setup

Follow all the steps highlighted in the mTree Container Setup section
and set the Host Path to the mTree_auction_example folder (which you cloned in the previous step).

	If you installed mTree_auction_example by navigating to somewhere in your file system, you are going to have to locate your folder in finder window by reviewing the steps you took.

	If you did a simple git clone without ever using the cd command then you need navigate to your home folder (the folder which contains your Desktop) and select the mTree_auction_examples folder.

After finishing the setup process, click Container/Apps on the sidebar of
Docker Desktop. There should be a container by the name mTree_auction_examples
present.

[image: _images/mTree_auction_examples_comp_setup.png]

Your Containers/Apps section should display a container similar to this with the name you chose

Running mTree_auction_examples container

Start the container and open the shell. More details on how to do this are
covered in Container Options under Start
and Open Shell.

Your shell should look some version of this -

[image: _images/mTree_auction_examples_shell.png]

mTree_auction_examples shell produced by clicking the CLI button

Run the following commands to view the underlying files in the folder.

Mac

ls

Windows

dir

You should see the following subfolders-

[image: _images/quick_start_ls.png]

Folders inside mTree_auction_examples

Common Value Auction

One of the subfolders present should have the name common_value_auction. Further information about the
auction style and description can be found in the Common Value Auction section of Learning Paths.

In your mTree_auction_examples container shell type in the following command to set
the current directory to common_value_auction.

cd common_value_auction

File Structure

After setting common_value_auction as the current directory, run ls or dir and
you should see the following folders.

	config

	mes

	logs

[image: _images/quick_start_cva_ls.png]

Folders inside common_value_auction

Note

In order to properly run an mTree simulation you need to set the current
directory to the folder which contains a config, mes, and a logs folder.
mTree looks for these particular folders to run the simulation. For our example, this is the common_value_auction
folder inside mTree_auction_examples.

Tip

In the future, when designing your own container, you can set the Host Path
directly to the folder containing the config and mes folder. That way
you don’t have to navigate to the desired directory within the docker shell.

The config folder folder (short for configurations) contains your JSON config files which are used to instantiate mTree Actors defined in
the mes folder.

The mes folder (short for Microeconomic System) containes the python files where you define the different
Actor classes, namely - the Environment , Institution and Agent.

Warning

It is critical that your simulation folder contains a config folder, with a JSON config file inside,
and a separate mes folder with python files inside, which contain Environment , Institution and Agent code.
In the absence of any of these your mTree simulation will not run.

Inside the config folder in the common_value_auction auction example, you should see a basic_simulation.json file.
This is the config file which we will run.

For the next step we want to make sure that our current directory is common_value_auction so if you used the cd command to
change the directory to config and view its contents, we want to go up a directory using the following command to make sure
we are in the right directory.

cd ..

Running common_value_auction simulation

We can type the following command into the shell to start mTree.

mTree_runner

You should see something similar to this.

[image: _images/quick_start_mTree_runner.png]

mTree_runner window

Enter the following to start the selection process for the config file.

run_simulation

Your window should look like this.

[image: _images/quick_start_run_simulation.png]

run_simulation window

Click <enter> to select and run the basic_simulation.json file.
Your output should look something similar to this.

[image: _images/quick_start_run_config.png]

Running basic_simulation.json file

How to know your simulation has finished running?

mTree provides a check_status command that allows you to inquire the state of the simulation from the shell or console.
Run the following command in your shell to see the state of the simulation. If you wish to know more about this command visit mTree Simulation State
section.

check_status

Note

You can enter the check_status command multiple times to view the state of your simulation.

Depending on the when you entered the check_status command, you should see any one of the following screens.

[image: _images/quick_start_check_status_running.png]

This indicates our simulation is still running

[image: _images/quick_start_check_status_finished.png]

This indicates our simulation has finished running and we can move
to the next step and view our simulation results.

Once we have identified that our simulation has finished we can move on to the next step which involves

Simulation Results

Ideally when a simulation is run, you should setup Actors in such a way that
they constantly log their states to .log and .data files.
This allows us to analyze how Actors behaved in our system, what decisions they made, and what effects those decisions had on the
system as whole.

logs

The logs folder, inside your simulation folder (which in our case is common_value_auction), is where the
output from your simulation gets stored. You should see a file ending in .log and a file ending in .data.

More on how these files are named can be found here.

Note

In the figure below, we use VSCode [https://code.visualstudio.com] to open the generated log files.
However, no IDE is necessary to open these files and your notepad should also work.
That being said, we still advise using an IDE, like VSCode, to interact with an mTree simulation,
since they make viewing and editing files of different formats more intuitive.

The first few lines of you .log file document the config file parameters which were used to run the simulation

[image: _images/quick_start_log_config.png]

basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.log

The rest of your .log file should look as follows.

[image: _images/quick_start_log_rest.png]

basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.log

Your .data file should look something like this -

[image: _images/quick_start_data_log.png]

basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.data

Note

Don’t worry if the log files on your end don’t match the ones shown here word for word. Since mTree is a
concurrent Agent-Based Modelling software, it is common for different Actors to log asynchronously to the
same .log and .data files, giving them an out of order look.

Checking for Errors

You can use the ctrl F (Windows) or cmd F (Mac) command to search for Error messages in the .log file. If there are no results then it is likely
that your simulation has run properly. If there are instances of Error messages then check out the Error Handling section.

Warning

If you see no results for Error but your mTree log stops logging in the middle of the simulation, then it is still
possible you have logic errors that don’t terminate the process. Luckily, you don’t have to worry about that in the
common_value_auction auction example.

Quitting

Once the simulation has ended, you can run quit command in the docker shell to kill mTree. The quit command
is used to kill all mTree processes as well as delete all Actor instances previously created to run the simulation.

quit

Your console should look like some version of this -

[image: _images/quick_start_quitting_mTree.png]

Quitting mTree

Conclusion

Congratulations on successfully running your first mTree simulation! If you want to know how this example was built
or you want to find more projects like this, checkout Common Value Auction or Learning Paths sections.
If you want to view a more in-depth case which builds an mTree project from scratch, checkout Quick Build.

Quick Build

Reference

Several sections are under development…

Theory of Operations

	Contains a description and background of Microeconomic Systems and how mTree allows you to define different actors

	Goes in depth as to why mTree.

	Need to define why messages are necessary

messages

In the Actor system, Actors only have access to their personal states. As a result,
the only way Actors can change their state is through some constant design or by recieving new
information from a different Actor.

In mTree, Actors send messages using the Message class which needs to be imported at the top
of each file that includes the code for your mTree Actor.

The Message class is used to create a Message object, which is then used to send a message
to another Actor. The following code snippet shows how crafting and sending a basic message looks like.
To know more about the neccessary contents of messages check out How to send a message.

new_message = Message() #creates a message object
new_message.set_sender(self.myAddress) #self.myAddress is the agent's personal mTree Actor address
new_message.set_directive("institution_message") #directives are used by message receiving agents to recieve specific messages
message_payload = "any_python_data_type_would_do"
new_message.set_payload(message_payload) #you can set the payload to any python data type

self.send(reciever_address, new_message) # This method is used to finally send your message

start_environment

The start_environment message is the very first message that gets sent by the mTree_runner to the Environment Actor (specified in the config folder file)
after mTree initializes everything.

#inside simulation_folder/mes/environment_file.py

@directive_enabled_class
class EnvironmentClass(Environment):
 def __init__(self):
 pass

 @directive_decorator("start_environment")
 def start_environment(self, message:Message):
 pass

Tip

The start_environment directive can be viewed as the genisis message which gets the ball
rolling for all other subsequent messages. Therefore, it is recommended that the directive is
used to initialize the environment state as well as send important state information to other Actors.

Warning

All mTree simulation need to have a start_environment directive specified in
the Environment Actor in order to start their simulation. However, messages sent in the start_environment
directive as well as other directives can be based on your design.

How to send a message

In order to send a message, the Actor must first receive a message in a directive first.
Once in a directive, the key elements for a message are -

	Sending Actor’s address: Usually accessed by self.myAddress

	Content: This could be any python data type message (None types also work) that you want the other Actor to recieve.

	Receiving Actor’s address: This could be accessed several ways, see code example in directive or checkout address book

Here is how you can define and send a message-

new_message = Message() #creates a message object
new_message.set_sender(self.myAddress) #self.myAddress is the agent's personal mTree Actor address
new_message.set_directive("institution_message") #directives are used by message receiving agents to recieve specific messages
new_message.set_payload("any_python_data_type_would_do") #you can set the payload to any python data type

self.send(reciever_address, new_message) # This method is used to finally send your message

In the example below, we continue the start_messsage directive method in the Environment and send a message

to the Institution.

@directive_enabled_class
class EnvironmentClass(Environment):
 def __init__(self):
 pass

 @directive_decorator("start_environment")
 def start_environment(self, message:Message):

 your_message = Message() #create a message object
 your_message.set_sender(self.myAddress) #self.myAddress is the agent's personal mTree Actor address
 your_message.set_directive("institution_message") #directives are used by message receiving agents to recieve specific messages
 your_message.set_payload("any_python_data_type_would_do") #you can set the payload to any python data type

 #checkout the <address_book> section in References to find how different Actors access each other's addresses
 receiver_address = self.address_book.select_addresses({"short_name":"institution_file.InstitutionClass 1"})

 self.send(receiver_address, your_message) # This method is used to finally send your message

Directives / Receiving Messages

Directives are special class methods defined in Actor classes (contained in .py files inside your mes folder).
They are used to view messages sent to the Actor.

Actors need to have the following in their classes to recieve a particular message.

@directive_decorator("directive_name")
def directive_name(self, message: Message):

 message_payload = message.get_payload() #accesses the message payload
 message_sender_address = message.get_sender() #access the sender agent's address

Warning

In order to recieve a messsage your directive name and your method name need to be the same, otherwise,
mTree throws the following error.

Note

For the following example our Actor is set as the Institution type, however, the message receiving process is applicable
for any type.

In this example below, the institution receives a message sent by the Environment in send message.

@directive_enabled_class
class InstitutionClass(Institution):
 def __init__(self):
 pass

 @directive_decorator("institution_message")
 def institution_message(self, message:Message):#The method name needs to be the same as the directive name set in quotes above

 message_payload = message.get_payload() #accesses the message payload
 message_sender_address = message.get_sender() #access the sender agent's address

 #You can find more on logging in the <logs> section in References
 self.log_message(f"message_payload = {message_payload}\n"
 f"message_sender_address = {message_sender_address}\n")

Your log file should produce the following output -

1645122024.0900638 message_payload = any_python_data_type_would_do

1645122024.0937853 message_sender_address = ActorAddr-(T|:43253)

Actor Description

Imports

While coding mTree Actors, there are several features that mTree provides Actor classes the ability to interact with
within the Actor world.

Necessary Imports

Each file that contains the code for your mTree Actors (Environment/Institution/Agent)
needs to have the following imports in order to work properly.
These imports provide the Actors with a range of capabilities including but not limited to communicating via messages.

from mTree.microeconomic_system.environment import Environment #Parent class for Environment Actors
from mTree.microeconomic_system.institution import Institution #Parent class for Institutoin Actors
from mTree.microeconomic_system.agent import Agent #Parent class for Agent Actors
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message #Message class allows you to create and send messages
import logging #Allows you to log messages to log files

Additional Imports

mTree also provides the following additional imports when running mTree in a container.

import math
import random

import time
import datetime
import sympy

General Methods and Capabilities (better name under way)

Each Actor comes with a general set of capabilities, often represented in the form of class variables and methods
available to the Actor. On top of that, there are Actor specific class variables and methods that mTree reserves
for the Environment Actor, which might not be available to Institution and Agent Actors. Some of these methods
have individual sections such as Message Sending, address_boook, and logging, however, some Actor specific methods
have been listed under the different Actor sections.

The four main capabilities have been listed below -

	Message Sending- covers how and what Actors can send to each other

	Address Book- covers how to keep track of other Actor’s address(without which you can’t send messages)

	Logging- covers how to output interactions taking place inside a simulation

	short_name- unique identifier of the Actor, used to navigate the address_book and keep track of Actors.

short_name

The short_name is a simple unique identifier created by mTree for each Actor within the system. The short_name
can be used for identifying which Actor logged the data as well as for navigating the address_book.

Note

short_name was created to distinguish between multiple instances of the same Actor Class (an example of
an Actor Class can be InstitutionClass from the message sending example above). Therefore,
currently self.short_name is not accessible to the Environment Actor because there can only be one
and doesn’t need distinguising. However, newer versions of mTree plan on instilling short_name identifier in all
Actors for uniformity purposes.

The Actors can access their individual short_name the following way -

self.short_name #since it is a class variable, it can be called anywhere in the Actor class

if we use the self.log_message(content) method to log this variable we should observe the following output -

self.log_message(self.short_name) #more about this method can be found in the log_message section

Output

[image: _images/reference_short_name_agent.png]

If you log the self.short_name in an Agent Actor you would can see any one of the following
outputs.

[image: _images/reference_short_name_institution.png]

If you log the self.short_name in an Institution Actor you would can see any one of the following
outputs.

The short_name can identify where the Actor code is located in the mes folder, which Actor Class within
that file was used to create the Actor, and, finally, which instance of the Actor Class is the current Actor.
The last part is useful because there can be multiple instances of the same Actor Class and the short_name allows
use to differentiate among them.

Environment

Here is a code snippet that you can modify to construct your mTree Environment Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.EnvironmentClass",
#Example - environment_file.InstitutionClass (assuming the filename is set to environment_file.py)
@directive_enabled_class
class EnvironmentClass(Environment): #you can change the class name to anything, as long as the parent class (Environment) stays same
 def __init__(self):
 pass

 @directive_decorator("start_environment")
 def start_environment(self, message: Message): # The first message sent by mTree_runner, check messages section to find out more

 pass

Tip

You can change the class name of the above Actor EnvironmnetClass to anything as long as
the parent class Environment stays the same.

Institution

Here is a code snippet that you can modify to construct your mTree Institution Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.InstitutionClass",
#Example - institution_file.InstitutionClass (assuming the filename is set to institution_file.py)
@directive_enabled_class
class InstitutionClass(Institution): #you can change the class name to anything, as long as the parent class (Institution) stays same
 def __init__(self):
 pass

Tip

You can change the class name of the above Actor InstitutionClass to anything as long as
the parent class Institution stays the same.

Agent

Here is a code snippet that you can modify to construct your mTree Agent Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.AgentClass" ,
#Example - "institution_file.InstitutionClass" (assuming the filename is set to institution_file.py)
@directive_enabled_class
class AgentClass(Agent): #you can change the class name to anything, as long as the parent class (Agent) stays same
 def __init__(self):
 pass

Tip

You can change the class name of the above Actor AgentClass to anything as long as
the parent class Agent stays the same.

config folder

There needs to be a config folder inside each mTree simulation folder. Within the config folder there needs to
be a .json file that contains your simulation configurations. Although, the name of the config folder cannot be changed, nevertheless,
your .json config file, can have any name.

config file

Your config file is a .json file containing a json dictionary. Inside this json dictionary we define the
key parameters that mTree uses to instantiate the various Actors as well as any simulation specific
variables that our Actors might need.

{"mtree_type": "mes_simulation_description",
"name":"Basic Simulation Run",
"id": "1",
"environment": "environment_file.EnvironmentClass",
"institution": "institution_file.InstitutionClass",
"number_of_runs": 1,
"data_logging": "json",
"agents": [{"agent_name": "agent_file.AgentClass", "number": 5}],
"properties": {"this_a_property":"this_is_a_property"}
}

mTree use

{"mtree_type": "mes_simulation_description",
 "name": "any name should do",
 "id": "1"
 }

Although, the first three keys are used by mTree on a systemic level, however, even if you don’t include
the three keys, mTree assigns default values for them. More importantly, it is still highly recommended that you
pass some values for them, even the ones suggested above.

Referencing different actors

Within the config file we inform mTree which code we want to use to spawn Actors.

[image: _images/reference_config_referencing.png]

The figure shows how an Environmnet Actor(EnvironmentClass) is referenced within a config file.

Environment

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass" }

After selecting and running a config file, the mTree_runner looks for the Environment Actor code
inside the mes folder. The value of the "environment" key - “environment_file.EnvironmentClass” informs mTree
to spawn the Environment Actor using the EnvironmentClass class present inside the environment_file.py file, which
in turn should be located inside the mes folder.

Note

Unlike Institutions and agents, mTree only allows for a single Environment per simulation.
Also, each simulation needs to have an Environment Actor because the very first message that gets
sent by the system is the start_environment message.

Institution

Single Instance

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institution": "institutin_file.InstitutionClass"
 }

After selecting and running a config file, the mTree_runner looks for the Institution Actor(s) code
inside the mes folder. The value of the "institution" key - “institution_file.InstitutionClass” informs mTree
to spawn the Institution Actor(s) using the InstitutionClass class present inside the institution_file.py file
inside the mes folder.

Multiple Instances

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institutions": [{"institution": "institution_file.InstitutionClass", "number": 2}]
 }

For multiple instances of the same InstitutionClass Actor we use the above format where
the key changes from "institution" to "institutions", and the corresponding value is a list of
dictionaries. Within the institution dictionary, the value of the "institution" key specifies
where the Institution Actor code is and the value of the "number" key specifies - how many to spawn.

To sum it all up, the above code should create 2 Institution Actors using the same code present
inside mes/institution_file.py with the class name - InstitutionClass.

Multiple Institutions

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institutions": [{"institution": "institution_file.InstitutionClass", "number": 1},
 {"institution": "institution_file.DifferentInstitutionClass", "number": 1}]
}

Notice that the "institutions" key has a list as its corresponding value. Inside this list,
you can insert the different types of Institution Actor you want to create as separate dictionaries.
This is useful if you have two separate coded institution classes that serve different roles
in your microeconomic system.

You can also control the number of instances of each particular Institution Actor using the
"number" key.

Agents

The reference for Agents works exactly like references for Institutions.

Single Instances

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institution": "institutin_file.InstitutionClass",
 "agent": "agent_file.AgentClass"
 }

After selecting and running a config file, the mTree_runner looks for the Agent Actor(s) code
inside the mes folder. The value of the "agent" key - “agent_file.AgentClass” informs mTree
to spawn the Agent Actor(s) using the AgentClass class present inside the agent_file.py file
inside the mes folder.

Multiple Instances

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institution": "institutin_file.InstitutionClass",
 "agents": [{"agent": "agent_file.AgentClass", "number": 2}]
 }

For multiple instances of the same AgentClass Actor we use the above format where
the key changes from "agent" to "agents", and the corresponding value is a list of
dictionaries. Within the agent dictionary, the value of the "agent" key specifies
where the Agent Actor code is and the value of the "number" key specifies - how many to spawn.

To sum it all up, the above code should create 2 Agent Actors using the same code present
inside mes/agent_file.py with the class name - AgentClass.

Multiple Agents

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institution": "institutin_file.InstitutionClass",
 "agents": [{"agent": "agent_file.AgentClass", "number": 1},
 {"agent": "agent_file.DifferentAgentClass", "number": 1}]
}

Notice that the "agents" key has a list as its corresponding value. Inside this list,
you can insert the different types of Agent Actor you want to create as separate dictionaries.
This is useful if you have two separate coded agent classes that serve different roles
in your microeconomic system.

You can also control the number of instances of each particular Agent Actor using the
"number" key.

Simulation Properties/ self.get_properties()

Users are allowed to specify additional information to the "properties" dictionary. This dictionary is
reserved for including information that is simulation specific and can be used to initialize different
agent types, initialize different institutions, and much more. Check out one of the Learning Paths
to view how properties can be used to prevent hard coding Actors.

{"mtree_type": "mes_simulation_description",
 "name": "Basic Simulation",
 "id": "1" ,
 "environment": "environment_file.EnvironmentClass",
 "institution": "institutin_file.InstitutionClass",
 "agents": [{"agent": "agent_file.AgentClass", "number": 1},
 {"agent": "agent_file.DifferentAgentClass", "number": 1}],
 "properties": {"agent_types": ["buyer", "seller"],
 "agent_endowment": 30,
 "institution_type": ["sealed_bid_auction", "common_value"]
 }
}

Accessing Properties

Information mentioned in the "properties" dictionary can be accessed by the Environment Actor using
the following code.

self.get_properties() # this should return the entire properties dictionary.

Example

If we wanted to access the properties mentioned above, we could use the following code.

agent_type_list = self.get_properties()["agent_types"] #list, accessing the different agent types in the system
agent_endowment = self.get_properties()['agent_endowment'] #int, accesing the agent endowment
institution_type_list = self.get_properties()['institution_type'] #list, institution_type_list

Note

Only the Environment Actor has access to the self.get_properties() method and can choose to pass relevant
information (defined in the config) regarding the an Actor’s initial states to them.

address book

The address_book is an mTree object that stores and manages addresses of all the Actors
that are initialized in the config folder file. Each Actor in the system has an address_book object
instantiated when they are spawned. However, at the beginning, only the Environment Actor’s address_book
has the complete list of Actor addresses in the system.

The Environment Actor can then choose to pass the addresses to different Institution and Agent Actors
across the system. We have listed below the different methods that this address_book object has and how to
access them.

How to access the address_book

The address_book object can be accessed by the Actors in the following ways

self.address_book()

self.address_book is a class variable that gets set by mTree for each Actor prior to
sending the start_environment directive message and points to the Actor’s own address_book object.
Since self.address_book is a class variable, it can be accessed everywhere.

Structure

Below we evaluate one of the key address_book methods and explore how addresses are stored.

all_addresses = self.address_book.get_addresses() #This code should return a dictionary of the following format
self.log_message(all_addresses) #since mTree suppresses print statements, logging is the only way to get info out

#The above message should output the following dictionary
#Notice all the keys are the different actor's short_names and the value of each
#key is another dictionary containing other important distinguishing information about the Actor
 {'institution_file.InstitutionClass 1': {'address_type': 'institution', #The Actor's type
 'address': <thespian.actors.ActorAddress object at 0x401aff5c70>, #The Actor's address
 'component_class': 'institution_file.InstitutionClass', #Where the code for ActorClass is located
 'component_number': 1, #instance number of the Actor
 'short_name': 'institution_file.InstitutionClass 1'}, #Actor short_name
 'agent_file.AgentClass 1': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b0002e0>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 1,
 'short_name': 'agent_file.AgentClass 1'},
 'agent_file.AgentClass 2': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b000460>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 2,
 'short_name': 'agent_file.AgentClass 2'},
 'agent_file.AgentClass 3': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b0004f0>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 3,
 'short_name': 'agent_file.AgentClass 3'},
 'agent_file.AgentClass 4': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b000580>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 4,
 'short_name': 'agent_file.AgentClass 4'},
 'agent_file.AgentClass 5': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b000610>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 5,
 'short_name': 'agent_file.AgentClass 5'}
 }

We are going to evaluate a single entry in this address_book dictionary and explore what each information
means in the figure below.

[image: _images/reference_address_book_dict.png]

More about short_name can be found in the short_name section.

Note

For the rest of the address_book section, we will refer to keys in the dictionary
above as entries and their corresponding value, which is another dictionary, as the
description dictionary.

Warning

Currently all Actor Instances except the Environment Actor have an entry in the address_book. As a result,
the only way to get the Environment Actor’s address is to receive a message from it and
access the address using message.get_sender() method inside the directive you receive a message from the
Environment Actor.

Methods

The address_book object provides several methods.

self.address_book.get_addresses()

The following returns a dictionary with all address_book elements exactly like the one explored in Structure section
above.

self.address_book.get_addresses() #This code should return a dictionary of the following format

#the get_addresses() method returns all the elements stored in the .addresses variable inside the address_book object
#another way to access the same dictionary can be
#self.address_book.addresses

self.address_book.merge_addresses(addresses)

This method allows you to merge your address_book with another address_book. The goal of this
method is to append your personal address_book using the addresses provided as input.

Input: dict

The addresses argument in self.address_book.merge_addresses(addresses) needs follow the address_book
dictionary structure as shown in the Structure section.

Output: None

Although,``self.address_book.merge_addresses(addresses`` method does not return anything, nevertheless, it updates
the Actor’s personal address_book object to include the new entries mentioned in the addresses input dictionary.

Tip

Since, at first, only the Environment Actor has a complete address_book with entries
of all the Actors in the system. Consequentially, the Environment can access the address_book dictionary
using self.address_book.get_addresses() and pass this to other Actors
by setting it as the message payload. The Actor receiving the
address_book dictionary can then add those addresses to its personal
address_book using self.address_book.merge_addresses(address_book_dictionary)

Example: Environment sends Institution the address_book

self.address_book.get_agents()

The following returns a dictionary similar to the one in self.address_book.get_addresses(), however,
only includes entries whose description dictionary “address_type” key has the value - “agent”

self.address_book.get_agents()#Only returns the addresses of Agent Actors

Output: float

The code above should return the following dictionary -

{'agent_file.AgentClass 1': {'address_type': 'agent', # all elements are 'agents'
 'address': <thespian.actors.ActorAddress object at 0x401b0002e0>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 1,
 'short_name': 'agent_file.AgentClass 1'},
'agent_file.AgentClass 2': {'address_type': 'agent',
 'address': <thespian.actors.ActorAddress object at 0x401b000460>,
 'component_class': 'agent_file.AgentClass',
 'component_number': 2,
 'short_name': 'agent_file.AgentClass 2'},

 ... }

self.address_book.get_institutions()

The following returns a dictionary similar to the one in self.address_book.get_addresses(), however,
only includes entries whose “address_type” key has the value - “institution”

self.address_book.get_institutions()#Only returns the addresses of Agent Actors

Output: dict

The code above should return the following dictionary

{'institution_file.InstitutionClass 1': {'address_type': 'institution',
 'address': <thespian.actors.ActorAddress object at 0x401aff5c70>,
 'component_class': 'institution_file.InstitutionClass',
 'component_number': 1,
 'short_name': 'institution_file.InstitutionClass 1'},
 ...
 }

self.address_book.num_agents()

The following sums up the number of entries with {"address_type":"agent"} in their
description. So if there are 5 Agent Actors in our simulation, the following code should
output-

self.address_book.num_agents()

Output: float

5

self.address_book.num_institutions()

The following sums up the number of entries with {"address_type":"institution"} in their description.
So if there is a single Institution Actor in our simulation, the following code should
output-

self.address_book.num_institutions()

Output: float

1

self.address_book.select_addresses(selector)

The self.address_book.select_addresses(selector) outputs a list of mTree addresses
based on the selector that is provided.

Input: selector(dict)

The selector is a dictionary that can only have one of the following key and value pairs.

Selector

	key

	value

	“address_type”

	“agent”/”institution”

	“short_name”

	“file_name.ActorClass instance(int)”

The purpose of the selector is to help address_book object select specific
mTree addresses from the entries that have the same value as the selector inside their
description dictionaries.

#address_type selectors
agent_addresses_selector = {"address_type": "agent"}
institution_address_selector = {"address_type": "institution"}

#short_name selectors
agent_short_name_selector = {"short_name": "agent_file.AgentClass 1"}

#if you pass any of these as an input to
self.address_book.select_addresses(agent_addresses_selector)
#the above code would output either a list of addresses or a single address

Output: list or address

Depending on the number of entries in the address_book that agree with the selector, self.address_book.select_addresses(selector) returns
either a list of mTree_addresses or a single mTree_address.

Example: List of Addresses Returned

#we want to select all mTree Actor addresses of those that have "address_type" as "agent" in their
#description dictionaries
selector = {"address_type": "agent"} #we create a selector dictionary
agent_addresses = self.address_book.select_addresses(selector)

self.log_message(agent_addresses) #more about self.log_message can be found in the self.log_message section

Output

#Assuming we use the same config for all examples
#the above code should produce a similar list in the log file
#since we are using a config file with 5 Agent Actors, we get a list with 5 elements
[<thespian.actors.ActorAddress object at 0x40180f5a30>, <thespian.actors.ActorAddress object at 0x40180f5cd0>, <thespian.actors.ActorAddress object at 0x40180f6e80>, <thespian.actors.ActorAddress object at 0x40180f6e20>, <thespian.actors.ActorAddress object at 0x40180f6d90>]

Example: Single Address Returned

#we want to select all mTree Actor addresses of those that have "address_type" as "institution" in their
#description dictionaries
#since we are using a config file with 1 Institution Actor, we get a single address returned

selector = {"address_type": "institution"}
institution_address = self.address_book.select_addresses(selector)

self.log_message(institution_address) #more about self.log_message can be found in the self.log_message section

Output

#Assuming we use the same config for all examples,
#we know that there is only 1 Institution Actor in our system.
#Therefore the above code should produce a the following in the log file

ActorAddr-LocalAddr.1 #This is mTree address for the institution and can be used in the message sending proceess

Example: Using short_name selector

The short_name selector is useful when the Actor wants to send a message specifically
to another Actor. Since, no two Actors, share a common short_name, self.address_book.select_addresses(selector)
should return a single address.

#we want to select the mTree address of the Actor with the short_name - "institution_file.InstitutionClass 1"
#since short_names are unique to each Actor instance, the following should return a singe Actor address

selector = {"short_name": "institution_file.InstitutionClass 1"} # more on how short_names get assigned can be found in the short_name section
institution_address = self.address_book.selector(selector)

self.log_message(institution_address) #more about self.log_message can be found in the self.log_message section

Output

#Note this is should be the same as the output produced in the Example where our selector was {"address_type": "institution"}
ActorAddr-LocalAddr.1 #This is mTree address for the institution and can be used in the message sending proceess

Note

In most cases, self.address_book.select_addresses(selector) produces a for loop compatible list
of addresses(if there is more than one entry for which the selector applies to). Consequently,
this method becomes useful when you want to send message to multiple Actors with varying payloads.
However, if you want to send the same message(with no change in directive or payload) to a group of Actor types, you
might want to consider using self.address_book.broadcast_message(selector, message) instead.

Example: Combining .select_addresses(selector) and Message()

In the code example below, we try to send each Agent Actor slightly different value estimates for a common value good.
More about this code can be found in the Common Value Auction section in Learning Paths.

Institution Code
Here the institution sends slightly different value estimates of a common value good to
all the Agent Actors in its address_book

#This is an imagined directive that our institution finds itself in

@directive_decorator("institution_directive")
def institution_directive(self, message: Message):

 #We are assuming that the Institution Actor has already received a copy of the
 #Environment Actor's address_book which it has merged with its own using the
 # .merge_addresses(addresses) method.
 #We also assume we are using the same config with 5 Agent Actors.
 agent_address_list = self.address_book.select_addresses({"address_type": "agent"}) # produces a list of 5 Agent Actor addresses

 for agent_address in agent_address_list: #we iterate over the addresses

 #Assume self.common_value and self.error are float values set in
 #a previous directive
 lower_bound = self.common_value - self.error
 upper_bound = self.common_value + self.error

 #random.uniform will produce a different value_estimate b/w [lower_bound, upper_bound] for each iteration of the for loop
 value_estimate = random.uniform(lower_bound, self.common_value + self.error) #The random function should return a number between () and 20 with uniform probability

 #The dictionary we send to each agent
 payload_dict = {"value_estimate": value_estimate, "error": self.error}

 agent_message = Message()#create a message object
 agent_message.set_directive("receive_value_estimate") #this is the directive where each Agent can receive messages
 agent_message.set_sender(self.myAddress)#set the sender to the Actor's personal address
 agent_message.set_payload(payload_dict) #pass the payload dict we just defined

 self.send(agent_address, agent_message) #the agent_address would be new each time the for loop is run

Agent Message Receiving Code

Here the Agent Actor receives the unique value_estimate that the Institution sent
along with the ubiquitous error key.

@directive_decorator("receive_value_estimate")
def receive_value_estimate(self, message:Message):

 payload_dict = message.get_payload()#returns the payload dictionary that was set by the sender
 #we define class variables using the keys of the payload dictionary
 self.value_estimate = payload_dict["value_estimate"]
 self.error = payload_dict["error"]

Note

self.address_book.select_addresses(selector) is very useful method when sending a slightly unique message
to all Actors of one type (Institution/Agent). Notice, the only aspect of the message that changed for each iteration of the for loop
was the value_estimate. Moreover, in this example, we assume that all Agent Actors have a @directive_decorator(“receive_value_estimate”) in their
AgentClass. Although, this shouldn’t be a problem if all Actors belong to the same AgentClass, however, if there is
more than one AgentClass defined in the mes folder as well as referenced in the config file, each AgentClass would
need to have a @directive_decorator(“receive_value_estimate”) method. Otherwise, mTree would through
an ERROR.

self.address_book.broadcast_message(selector, message)

This method broadcasts or sends a message to all entries in the Actor’s personal
address_book that the selector agrees with. Unlike self.address_book.select_addresses(selector), which returns a list of addresses,
the self.address_book.broadcast_message(selector, message) method does the message sending for the
Actor.

Input: selector(dict), message

The selector is a dictionary that can only have one of the following key and value pairs.

Selector

	key

	value

	“address_type”

	“agent”/”institution”

	“short_name”

	“file_name.ActorClass instance(int)”

The purpose of the selector is to help address_book object select specific
mTree addresses from the entries that have the same value as the selector inside their
description dictionaries.

The message argument takes in the message object that needs to be passed
to all entries that the selector applies to.

Output: None

This method doesn’t return anything, however, performs the important function of sending the message,
that is submitted as an argument, to all the address_book entries that the selector applies to.

Example

The following code should send a message to all Agent Actor entries present in the address_book

new_message = Message()#we create a new message object
new_message.set_sender(self.myAddress)
new_message.set_directive("receive_message") #the directive_method where this message will be received
payload = None #you can choose this to be anything
new_message.set_payload(payload)

selector = {"address_type": "agent"} # you can change the selector

self.address_book.broadcast_message(selector, new_message)#take note of how we pass the selector and the message object

Note

The self.address_book.broadcast_message(selector, message) is useful when you want to send the
same message (no variation) to all Actors of one type (Institution/Agent).

Example: Common Value Auction

The code example below is from Common Value Auction section in Learning Paths.
In this portion, the Environment Actor sends the Agent Actor their endowment which is
constant for all Agents in the system. As a result, self.address_book.broadcast_message(selector, message) becomes valuable because we are
sending the same message to all Agent Actors.

Environment Code

#self.provide_endowment is a method that gets run in the start_environment method

def provide_endowment(self):
 endowment = 30 #Agent endowment

 #Defining a Message
 new_message = Message() #declare message
 new_message.set_sender(self.myAddress) # set the sender of message to this actor
 new_message.set_directive("set_endowment") #set the directive
 payload_dict = {"endowment": endowment}
 new_message.set_payload(payload_dict) #set the payload as the payload_dict we defined in the line above

 #Broadcasting the message using the AddressBook
 selector = {"address_type": "agent"}
 self.address_book.broadcast_message(selector, new_message) #this will send a message to all Agent Actors

 #Or the following should also work
 #self.address_book.broadcast_message({"address_type": "agent"}, new_message)

Agent Message Receiving Code

#this is a directive inside the AgentClass
@directive_decorator("set_endowment")
def set_endowment(self, message: Message):

 payload_dict = message.get_payload() #we access the payload/content of the message that was sent
 environment_address = message.get_sender() #we access the environment's address

 self.endowment = payload_dict["endowment"]#we create a class variable self.endowment and set it equal to the amount sent by the environment

Logs

Logging is a way to output important information from a simulation in order
to keep track of what the code is doing at various steps, as well as collect data
for analysis.

There are 2 types of logging that mTree allows -

	Experiment Logging - Appears in the .log files.

	Data Logging- Appears in the .data files.

Each run of an mTree config file creates a .log file which
gets placed inside the logs folder inside your simulation_folder
(where your config folder and mes folders are stored).

Note

If you have already created a logs folder prior to running your mTree simulation,
your .log and .data files should appear inside it. Nevertheless, even if you haven’t
created one, mTree will generate a logs folder for you and place those files inside
it.

[image: _images/reference_logsfolder.png]

Inside the logs folder

Note

Although, each run of a config file creates a .log file, however,
a .data file only gets created when one of the ActorClasses uses the self.log_data(content) method
somewhere in one of its methods.

Naming

Each .log and .data file associated with a config file get named the following way -

[image: _images/reference_logs_filenaming.png]

Each run of the same config file should generate its own set of .log and .data files

The following figure shows how different runs of the same config file are named -

[image: _images/reference_logs_multipleruns.png]

Snapshot of the files that get generated inside the logs folder.

Experiment Logging

Experiment Logging can be used to keep track of

	The messages Actors send or receive.

	How received messages change the internal state of the Actors.

As a result, Experiment Logging can be used to monitor whether our simulation/experiment
is behaving according to our microeconomic system design.

self.log_message(content)

The self.log_message(content) is a method that gets setup for each Actor during initialization and allows
them to output information from various points within the ActorClass to the .log.

Since mTree suppresses print() statements, self.log_message(content) is the closest method we
have to monitor how the internal state of the Actors is changing in response to received messages.

The self.log_message(content) logs to the .log file present in the logs folder.

Input: content(any python data type)

self.log_message(content) method can take in all arguments types that a print() function is equipped to handle.

Warning

One of the common mistakes people make while using self.log_message(content)
is treating it exactly like a print() function and passing more than one argument to
it. For instance, if you pass 2 arguments to a print("a", "b") function, print() treats
the comma in between “a” and “b” as space and outputs - a b. However, if you run
self.log_message("a", "b") you will get an ERROR because the method only takes in a single
argument and you have tried to pass in two.

self.log_message(f"Anything that can be printed can be logged")

Output

The output generated in your .log file should look like the following.

1649966264.0786786 Anything that can be printed can be logged

[image: _images/reference_logmessage_output.png]

A .log file entry

Each time self.log_message(content) gets called by one of the Actors,
there is a new entry in the .log file on a new line. The first part of the
entry is the UTC timestamp of when the self.log_message(content) was called, the second
part (separated by a space) is the content you passed into the method.

Log File

The .log file for each run of an mTree config file should appear
in the logs folder.

Structure

The first few lines of the .log file that gets generated from the simulation run consists of
the json dictionary that was used as the configurations dictionary
for the run.

[image: _images/reference_logfile_config.png]

This is the same as the json dictionary inside the config file you ran.

The second part of the .log file consists of a series of timestamped log outputs made
by both mTree and self.log_message(content) calls (inside different message passing/receiving Actors).

mTree logging

mTree logs each time an Actor enters and exits a directive method. In other words,
mTree logs each time an Actor -

	Receives a message - denoted by entering the directive method where the message was sent to.

	Is finished processing the message - denotend by exiting the directive method where the message was sent to.

mTree logging also informs us who (short_name) received the message as well.

The following figure evaluates how an Institution Actor logs when a message is sent to it by the
Environment.

[image: _images/reference_logs_mtreelogging.png]

The entry and exit method can be a good way to keep track of what messages are being sent and whether they were processes or not.
For instance, if a message is never received by an Actor, then there should be not trace of an entry log similar to the once above
inside the .log file. Similarly, if a message is received, but somewhere inside the directive a python error occurs, then, firstly, mTree should
log the error, secondly, there should be no trace of the exit log.

Note

For clarity purposes, we have shown the entry and exit statements by mTree one after the other.
However, since mTree has a lot of concurrent actors logging to the .log file, it is possible that these
statements are far apart and have multiple log entries made by other Actors in between. Regardless, the
order of the statements should not change, meaning, the entry statement should still be observed
before the exit statement.

Actor logging

Actor logging refers to the logging done by different Actors using the self.log_message(content) method inside the Actor.
This can be used in conjunction with that mTree does automatically for both debugging the code and tracking whether
internal states of Actors is changing according to our design.

Example

The following code shows the log output generated by the Institution Actor when it receives
a copy of the addresses from the Environment and adds it to
its own version of address_book. During the process, we try to track the following values -

	self.address_book.get_addresses() - before and after self.address_book.merge_addresses(addresses) is called.

	message.payload() - The content of the message that gets sent.

	message.get_sender() - The mTree address of the message sending Actor.

We include the Environment Actor code that does the message sending but we only display the
log statements made by the Institution Actor for clarity.

Environment Code
Environment sends the addresses dictionary to Institution in start_environment directiv.

from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

@directive_enabled_class
class EnvironmentClass(Environment):
 def __init__(self):
 pass

 @directive_decorator("start_environment")
 def start_environment(self, message: Message):

 selector = {"short_name": "institution_file.InstitutionClass 1"}#short_name selector, helps in the select_addresses() method
 institution_address = self.address_book.select_addresses(selector) #extract the institution address from the address_book object
 #self.log_message(f"institution_address = {institution_address}")
 address_dictionary = self.address_book.get_addresses() #extract all the address_book entries

 new_message = Message() #define a message object
 new_message.set_sender(self.myAddress) #set sender to the Actor's personal address
 new_message.set_directive("institution_message")#set directive
 new_message.set_payload(address_dictionary) #set the payload to the address_dictionary we define above
 self.send(institution_address, new_message)

Institution Code
Institution receives the addresses dictionary and adds it to its address_book
object using self.address_book.merge_addresses(addresses). We track the message attributes that are received and
more specifically the

from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

@directive_enabled_class
class InstitutionClass(Institution):
 def __init__(self):
 pass

 @directive_decorator("institution_message")
 def institution_message(self, message:Message):

 environment_address = message.get_sender() #since environment is the message sender, we can extract its address this way.
 address_dictionary = message.get_payload() #the Environment sends the address_dictionary (obtained using self.address_book.get_addresses())

 #Logging Initial State
 self.log_message(f"Institution: environment_address = {environment_address}\n" # the environment's address
 f"Institution: address_dictionary = {address_dictionary}\n" # the address_dictionary it received from the Environment
 f"Institution: Initial self.address_book.get_addresses = {self.address_book.get_addresses()} ") #logs the current addresses it has in its possession

 self.address_book.merge_addresses(address_dictionary)#we merge the addresses we received with our own address_book object

 #Logging Final State
 self.log_message(f"Institution: Final self.address_book.get_addresses = {self.address_book.get_addresses()}")

.log Output

We have listed the log outputs generated as a result of the institution_message directive.

1650482151.553274 Institution (institution_file.InstitutionClass 1) : About to enter directive: institution_message
1650482151.556913 Institution: environment_address = ActorAddr-(T|:41851)
Institution: address_dictionary = {'institution_file.InstitutionClass 1': {'address_type': 'institution', 'address': <thespian.actors.ActorAddress object at 0x4018103c10>, 'component_class': 'institution_file.InstitutionClass', 'component_number': 1, 'short_name': 'institution_file.InstitutionClass 1'}, 'agent_file.AgentClass 1': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103b20>, 'component_class': 'agent_file.AgentClass', 'component_number': 1, 'short_name': 'agent_file.AgentClass 1'}, 'agent_file.AgentClass 2': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103310>, 'component_class': 'agent_file.AgentClass', 'component_number': 2, 'short_name': 'agent_file.AgentClass 2'}, 'agent_file.AgentClass 3': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103340>, 'component_class': 'agent_file.AgentClass', 'component_number': 3, 'short_name': 'agent_file.AgentClass 3'}, 'agent_file.AgentClass 4': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018101880>, 'component_class': 'agent_file.AgentClass', 'component_number': 4, 'short_name': 'agent_file.AgentClass 4'}, 'agent_file.AgentClass 5': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018101130>, 'component_class': 'agent_file.AgentClass', 'component_number': 5, 'short_name': 'agent_file.AgentClass 5'}}
Institution: Initial self.address_book.get_addresses = {}
1650482151.5645256 Institution: Final self.address_book.get_addresses = {'institution_file.InstitutionClass 1': {'address_type': 'institution', 'address': <thespian.actors.ActorAddress object at 0x4018103c10>, 'component_class': 'institution_file.InstitutionClass', 'component_number': 1, 'short_name': 'institution_file.InstitutionClass 1'}, 'agent_file.AgentClass 1': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103b20>, 'component_class': 'agent_file.AgentClass', 'component_number': 1, 'short_name': 'agent_file.AgentClass 1'}, 'agent_file.AgentClass 2': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103310>, 'component_class': 'agent_file.AgentClass', 'component_number': 2, 'short_name': 'agent_file.AgentClass 2'}, 'agent_file.AgentClass 3': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103340>, 'component_class': 'agent_file.AgentClass', 'component_number': 3, 'short_name': 'agent_file.AgentClass 3'}, 'agent_file.AgentClass 4': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018101880>, 'component_class': 'agent_file.AgentClass', 'component_number': 4, 'short_name': 'agent_file.AgentClass 4'}, 'agent_file.AgentClass 5': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018101130>, 'component_class': 'agent_file.AgentClass', 'component_number': 5, 'short_name': 'agent_file.AgentClass 5'}}
1650482151.5661018 Institution (institution_file.InstitutionClass 1) : Exited directive: institution_message

Based on the output we can see that the message was properly processed according to our code because of the entry logging and
exit logging**(first and last lines respectively). We were also able to check that the payload (line number 3 of the code-block) was not **None.
Finally, we were able to monitor the state change of the self.address_book.get_addresses() in line 4 and the change
that takes place in line 5.

Data Logging

self.log_data(content)

Data File

Interpret into Jupyter notebook

Simple suggestions on how to log data using dictionaries and little code on how pandas could
be used to read the dataframe.

Error Handling

Directive name error

mTree Simulation State

Contribute

under development …

Learning Paths

Under development…

Tatonnement

Sealed Bid Auction

Ascending Price Auction

Descending Price Auction

Common Value Auction

Index

 _static/start_button.png
mTree_container_1.0.10 mtree/mtree:1....

EXITED (137) PORT: 5000

_static/started_container.png
mTree_container_1 .0.10 mtree/mtree:1....
PORT:SOOO @ @ @

_static/shell_button.png
w mTree_container_1.0.10 mtree/mtree:1....

RUNNING PORT: 5000

_static/sidebar_logo.png
m%ree

_images/installation_wls_kernel_update.png
@ Docker Desktop - Install WSL 2 kemel update X
WSL 2 installation is incomplete.

The WSL 2 Linux kernel is now installed using a separate MSI update package.
Please click the link and follow the instructions to install the kernel update:

https://aka.ms/ws|2kernel.
Press Restart after installing the Linux kernel.

Restart Cancel

_images/mTree_auction_examples_comp_setup.png
Containers / Apps
Images
Volumes

Dev Environments

O\ Search...

Q@ mTree_auction_examples mtree/mtree:1....
exTeD (137) ([N

Sort by v

_images/installation_mTree_docker_pull.png
- -bash —80x24

Last login: Tue Mar 1 11:25:15 on ttys@01 L

The default interactive shell is now zsh.
To update your account to use zsh, please run “chsh -s /bin/zsh’

For more details, please visit https://sup o 8050. 1
(base) IEEE-MacBook-Pro:~ I]
1.0.11c: Pulling from mtree/mtree
33847f680f63: Already exists
£f810a0db00f: Already exists
2cb7a358a8ff: Already exists
4665bc654896: Already exists
3bc8698f7107: Already exists

Pull complete

Pull complete
15bea82b6335: Pull complete
1bafef290@ecd: Pull complete
d5c734351749: Pull complete
Digest: sha256:b629e4d21bc45887e51107d14739eca@309f0c88a433821c5fe2ecc224026039
Status: Downloaded newer image for mtree/mtree:1.0.1lc
docker.io/mtree/mtree:1.0.11c

(base) -MacBook-Pro:~ IS

_static/stop_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_images/installation_unstarted_container.png
Containers / Apps
Images
Volumes

Dev Environments

O\ Search...

‘ﬁ] mTree_auction_examples mtree/mtree:1....
ExITED (137) (N

Sort by v

_images/mTree_image.png
Containers / Apps
Images
Volumes

Dev Environments

Images on disk

LOCAL

Q

NAME

mtree/mtree

TAG

1.0.10

[J InUseonly

IMAGE ID

f930eecc737d

12 images Total size: 3.3 GB

CREATED

4 months ago

IN USE

SIZE

735.73 MB

UNUSED

Cleanu

_images/mTree_logo.png

_images/mTree_auction_examples_shell.png
- com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd440e20 /...

Last login: Thu Feb 3 11:39:38 on ttys000
docker exec -it bd733ad89691f20c74f970e4060eeaebbdal53624dc507f14ed40b19fd440e20 /bin/
sh

The default interactive shell is now zsh.

To update your account to use zsh, please run “chsh -s /bin/zsh’.

For more details, please visit https://support.apple.com/kb/HT208050.

(base) N cdocker exec -it bd733ad89691f20c74f970e4060eeaebbda
153624dc507f14ed40b19fd440e20 /bin/sh

sh-5.0#

_images/mTree_container_setup.png
mTree_auction_examples mtree/mtree:1.0.11c

CREATION IN PROGRESS ~ PORT: 5000

Optional Settings AN

Container Name

mTree_auction_examples A/\

You can set this to

Ports anything as long as
there are no spaces
Local Host Container Port in your name
5000 5000/tcp
Volumes Copy
. this
Host Path Container Path
exactly
/Users/nalin/Repos/rr @ /auctions @
/ Click "RUN”
once everythin
Press ... to set the “Host is settzlp 9T

Path” to the folder which
contains the mes and
config files

_images/quick_start_check_status_finished.png
mTree> check_status
dmmmmmmmm - L LR T dmmmmmmmmmm - dmmmmmm o - e E e +
| Run Code | Configuration | Run Number | Status | Total Time

_images/quick_start_check_status_running.png
mTree> check_status

et T e E L e T dommmmmmmmm - dmmmmmm oo Fmmmm oo +
| Run Code | Configuration | Run Number | Status | Total Time
dmmmmmm - - e L L PR TP dommmmmmm - +--——==oc-- mmmmmmmm oo +

| 5b652b | Common Value Auction | 1 |Running)| 0:00:02.061962 |

ST L E LTS dmmmmmmmm—m—m—me—eeeo-o ommmmmmm—-—- do=------- dommmmmmmmmemoe—- +

_static/reference_short_name_institution.png
V

Python file name
where your
InstitutionClass is
stored

y

Class name of
your Actor

|

Instance number
(Each instance
gets its own
number)

_static/restart_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_static/reference_logsfolder.png
<

> simulation_folder

config mes

L

logs

oo
oo
<>

basic_config-2022
_04_14-. ent.data

basic_config-2022

_041 4—...imen‘

OO e

Q

_static/reference_short_name_agent.png
agent_file.AgentClass 1
v y V

Python file name Instance number

where your Class name of (Each instance

AgentClass is stored your Actor gets its own
Number)

| agent_file.AgentClass 2|
I | |

Python file name Class name of Instance number
where your your Actor (Each instance
AgentClass is stored gets its own

Number)

_images/quick_start_cva_ls.png
- com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

[sh-5.0# 1s | =
config mes
sh-5.0#

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Installation

 		
 Installing Docker Desktop

 		
 Installing mTree

 		
 mTree Container Setup

 		
 Container Options

 		
 Quick Start Guide

 		
 Cloning mTree_auction_examples

 		
 Running mTree_auction_examples

 		
 mTree_auction_examples container setup

 		
 Running mTree_auction_examples container

 		
 Common Value Auction

 		
 File Structure

 		
 Running common_value_auction simulation

 		
 How to know your simulation has finished running?

 		
 Simulation Results

 		
 Checking for Errors

 		
 Quitting

 		
 Conclusion

 		
 Quick Build

 		
 Reference

 		
 Theory of Operations

 		
 messages

 		
 start_environment

 		
 How to send a message

 		
 Actor Description

 		
 Imports

 		
 Necessary Imports

 		
 Additional Imports

 		
 General Methods and Capabilities (better name under way)

 		
 short_name

 		
 Environment

 		
 Institution

 		
 Agent

 		
 config folder

 		
 config file

 		
 address book

 		
 How to access the address_book

 		
 Structure

 		
 Methods

 		
 Logs

 		
 Naming

 		
 Experiment Logging

 		
 Data Logging

 		
 Error Handling

 		
 Directive name error

 		
 mTree Simulation State

 		
 Contribute

 		
 Learning Paths

 		
 Tatonnement

 		
 Sealed Bid Auction

 		
 Ascending Price Auction

 		
 Descending Price Auction

 		
 Common Value Auction

_images/quick_start_log_rest.png
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1646083924.465222
1646083924.6373026
1646083924.4735575
1646083924.4744372
1646083924.476893
1646083924.5023775
1646083924.5200331
1646083924.5687892
1646083924.5863752
1646083924.5894 env
1646083924.591261
1646083924.6043892
1646083924.606229
1646083924.5880406
1646083924.839744

Environment: Exited directive: logger_setup

Institution (institution.AuctionInstitution 1) : Exited directive: simulation_properties
Environment: About to enter directive: simulation_properties
Environment: Exited directive: simulation_properties

Environment: About to enter directive: setup_institution
Environment: Exited directive: setup_institution

Environment: About to enter directive: setup_agents

Environment: Exited directive: setup_agents

Environment: About to enter directive: start_environment

forward

env done forward

env start auc

Environment: Exited directive: start_environment
ActorAddr-(T|:33709)

Agent (agent.AuctionAgent 1: Exited directive: simulation_properties

_images/quick_start_ls.png
— com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

[sh-5.0# 1s |5
README . md descending_price_auction thespian.log
ascending_price_auction sealed_bid_common_value_auction

common_value_auction tatonnement

sh-5.0#

_images/quick_start_data_log.png
CoNO U A WN R

s}
12
13
14
3
16
17

1646083925.1102464
1646083925.169673
1646083925.228792
1646083925.255096
1646083925.4306583
1646083925.4324872
1646083925.4516287
1646083925.2871006
1646083925.6392362
1646083925.4928484
1646083925.6707416
1646083925.6476855
1646083925.47394
1646083925.84022
1646083925.6645517
1646083925.8512564
1646083925.8192937

{'bid': 22.28726431852634}
{'bid"': 26.44147706261188}
{'bid"': 26.26618496288426}

{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid

26.29437953913788}
47.52505396198343}
47.50420403483543}
47.0373592313149}
27.876615049326382}
29.79582547380325}
43.1330164546055}
29.34444799424905}
30.415430279165037}
42.93607898067013}
38.282917774842105}

{'bid"': 34.30253446345523}
{'bid"': 33.13013649149798}
{'bid": 35.78781525591257}

_images/quick_start_log_config.png
Simulation Configuration: {
"mtree_type": "mes_simulation_description",
"name" Common Value Auction",

'
"description”

null,

"environment": "environment.AuctionEnvironment",
“institutions": [
{
“institution": “institution.AuctionInstitution"
}
1,
“number_of_runs": 1,
“agents": [
{
"agent_name": "agent.AuctionAgent",
“number": 5
}

1,

“properties": {},

"data_logging": null,

"source_hash": "4351056b583485f1092c8bd8608535b",
"simulation_run_id": "basic_simulation-2022_02_28-09_32_04_PM",
"mes_directory": "/auctions/common_value_auction"

_images/quick_start_run_config.png
— com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

Starting prompt...

[mTree> run_simulation |
Running: basic_simulation.json

environment.AuctionEnvironment

{"mtree_type": "mes_simulation_description", "name": "Common Value Auction", "id
": "1", "description": null, "number_of_runs": 1, "environment": "environment.Au
ctionEnvironment", "institutions": [{"institution": "institution.AuctionInstitut
ion"}], "agents": [{"agent_name": "agent.AuctionAgent", "number": 5}], "properti
es": {}, "data_logging": null}

12@#* | J@#* | J@#* | 1@ * | J@#* | R@#* | 1@ * | J@#* | J@#* | @7 * | 1@#* | J@#* | @7 * | 1@ * | J@#* | @ *
12@#* | Q@#* | J@#* | 1@ * | J@#* | R@#* | @7 * | 1@ * | J@#*

{"mtree_type": "mes_simulation_description", "name": "Common Value Auction", "id
": "1", "description": null, "environment": "environment.AuctionEnvironment", "i
nstitutions": [{"institution": "institution.AuctionInstitution"}], "number_of_ru
ns": 1, "agents": [{"agent_name": "agent.AuctionAgent", "number": 5}], "properti
es": {}, "data_logging": null}

/opt/conda/lib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'agent.py

return self._open_to_write(zinfo, force_zip64=force_zip64)
/opt/conda/1lib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'environm
ent.py'

return self._open_to_write(zinfo, force_zip64=force_zip64)
/opt/conda/1ib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'institut
ion.py'

return self._open_to_write(zinfo, force_zip64=force_zip64)
4351056b583485ff1092c8bd8608535b
mTree>

_images/quick_start_run_simulation.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
. e . - . ___ @

I 0 > NI 2 Ve L N I IS E e NS e N s N]

I 0 A e e IE I Il

Bl e ff ellelfllolf N BN] U N N Ny) O Y I N D

Starting prompt...
[ImTree> run_simulation]

B EEbasic_simulation. json

Press <space>, <tab> for multi-selection and <enter> to select and accept

_images/quick_start_mTree_runner.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
... = 2@ - _ _

Il e e NI e Ny N I 1E | e NP e N7 N
I e e FE = R

el s] e [N [N] U N N Ny) I) I N B

Starting prompt...
mTree>

_images/quick_start_quitting_mTree.png
[ImTree> quit
Quitting.
sh-5.0#

_images/reference_address_book_dict.png
The Actor Instance's address_type refers to address contains the mTree Actor address
short_name acts as the

: ' o the Actor type that is used to send messages in the
unique identifier

T T self.send method

'agent_file.AgentClass 1': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress at 0x401b0002e0>,

'component_class': 'agent_file.AgentClass',
‘component_number': 1,
'short_name': 'agent_file.AgentClass 1'},

!

More about the component_class gives the

location of the Actor Class
short_name can be component_number .
code in our mes

A refers to the instance
with the same name. of the Actor Class the

current Actor is.

found in the section

_images/reference_config_referencing.png
simulation_folder g8 = [0 &2 E © v Q
config
mes
basic_config.json l l l
. PYTHON
PYTHON PYTHON
agent_file.py

environment_file. institution_file.py

py

Note how the
EnvironmentClass

Is referenced in the
basic_config.json file. This
informs mTree where to
find the Environment Actor
so it can instantiate it within
the Actor System. A similar
method is used to reference
other Actor types as well.

_images/reference_logfile_config.png
£ basic_config-2022_04_14-07_57_43_PM-R1-experiment.log

1 Simulation Configuration: {

2 "mtree_type": "mes_simulation_description",

3 "name": "Basic Simulation Run",

4 "id": "1",

5 "description": null,

6 "environment": "environment_file.EnvironmentClass",
7 "institutions": [

8 {

9 "institution": "institution_file.InstitutionClass"
10 }

11 5

12 "number_of_runs": 1,

13 "agents": [

14 {

15 "agent_name": "agent_file.AgentClass",

16 "number": 5

17 }

18 1,

19 "properties": {
20 "this_a_property": "this_is_a_property"
21 H
22 "data_logging": "json",
23 "source_hash": "a8f9082695607e88755c27e862ee0e86",
24 "simulation_run_id": "basic_config-2022_04_14-07_57_43_PM"

25 "mes_directory": "/auctions"
+

N
(=)}

_images/reference_logs_mtreelogging.png
Notice, the entry log
gets logged at an
earlier time than the
exit log.

Actor Type (Environment,
Institution, Agent) of the
message receiving Actor

!

Institution (

Institution (

Actor's short_name

!

Entry statements

inform that the directive:

Actor is about to directive_name
process a particular highlights the name of
message sent to it. the directive the

message was sent 1o

About to enter directive: institution_message R diIi il gRiET I
Exited directive: institution_message

L

Exit statements inform that
the Actor is about to process
a particular message sent to
it.

_images/reference_logs_multipleruns.png
Notice, the first part of the file name for
all files remains the same because they
share the same configurations and were

run at the same time .log and .data files
corresponding to the
T first run of the config file

basic_config-2022_04_20-02_07_11_PM-{R1}-experiment.data
basic_config-2022_04_20-02_07_11_PM-R1}-experiment.log

= basic_config-2022_04_20-02_07_11_PM

2-experiment.log

= basic_config-2022_04_20-02_07_11_PM experiment.data
R

.log and .data files
corresponding to
the second run of
the config file

_images/reference_logmessage_output.png
- Anything that can be printed can be logged

The UTC timestamp of when The content you
the self.log_message() was pass to the

triggered self.log_message()

_images/reference_logs_filenaming.png
Name of the Timestamp of when

Run
the config file was run

number

| ||| [

basic_config-2022_04_14-07_57_43_PM-R1-experiment.data

Log file type
config file

basic_config-2022_04_14-07_57_43_PM-R1-experiment.log

_images/reference_short_name_institution.png
V

Python file name
where your
InstitutionClass is
stored

y

Class name of
your Actor

|

Instance number
(Each instance
gets its own
number)

_images/restart_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_images/reference_logsfolder.png
<

> simulation_folder

config mes

L

logs

oo
oo
<>

basic_config-2022
_04_14-. ent.data

basic_config-2022

_041 4—...imen‘

OO e

Q

_images/reference_short_name_agent.png
agent_file.AgentClass 1
v y V

Python file name Instance number

where your Class name of (Each instance

AgentClass is stored your Actor gets its own
Number)

| agent_file.AgentClass 2|
I | |

Python file name Class name of Instance number
where your your Actor (Each instance
AgentClass is stored gets its own

Number)

_images/start_button.png
mTree_container_1.0.10 mtree/mtree:1....

EXITED (137) PORT: 5000

_images/started_container.png
mTree_container_1 .0.10 mtree/mtree:1....
PORT:SOOO @ @ @

_images/shell_button.png
w mTree_container_1.0.10 mtree/mtree:1....

RUNNING PORT: 5000

_static/Screen Shot 2022-01-24 at 9.08.40 PM.png
nalin — com.docker.cli « docker exec -it 5a4da21908e5aab184ab84622b6d875153b7a9854ab0fb...

Last login: Mon Jan 24 20:32:23 on ttys0@5

docker exec —-it 5a4da21908e5aabl84ab84622b6d875153b7a9854ab0fb6159101083F148fec7
/bin/sh

The default interactive shell is now zsh.
To update your account to use zsh, please run ‘chsh -s /bin/zsh".
For more details, please visit https://support.apple.com/kb/HT208050.

(base) Nalins-MacBook-Pro:~ nalin$ docker exec -it 5a4da21908e5aab184ab84622b6d8
75153b7a9854ab0fb6159101083f148fec7 /bin/sh
sh-5.0#

_images/stop_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_static/A_running_docker_container.png
Containers / Apps
Images

Volumes

Dev Environments

O\ Search...

w mTree_container_1.0.10 mtree/mtree:1....

RUNNING PORT: 5000

Sort by v

_static/container_command_prompt.png
— com.docker.cli « docker exec -it 5a4da21908e5aab184ab84622b6d875153b7a9854ab0fb6159101083f...

Last login: Mon Jan 24 21:06:25 on ttys006
docker exec -it 5a4da21908e5aab184ab84622b6d875153b7a9854ab0fb6159101083f148fec?
/bin/sh

The default interactive shell is now zsh.

To update your account to use zsh, please run “chsh -s /bin/zsh’.

For more details, please visit https://support.apple.com/kb/HT208050.

(base) I -MacBook-Pro:~ IS$ docker exec -it 5a4da21908e5aab184ab84622b6d8
75153b7a9854ab@fb6159101083f148fec? /bin/sh

sh-5.0#

_static/basic_config.png
{"mtree_type": "mes_simulation_description",

Basic Simulation Run",

“environment": "environment_file.EnvironmentClass",
“institution": "institution_file.InstitutionClass",
“number_of_runs": 1,
"data_logging": false,

"agents": [{"agent_name": "agent_file.AgentClass", "number": 5}1,

“properties": {"this_a_property":"this_is_a_property"}

_static/delete_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_static/docker_hub_mTree.png
mtree/mtree * ¥ pulls 277

By mtree « Updated 4 months ago

A container for running mTree economic simulations

Container
Overview Tags
Sortby Newest v Q Filter Tags
Pull command copied
TAG
1.0.10 docker pull mtree/mtree:1.0.10 |_|:|
Last pushed 4 months ago by mtree
DIGEST OS/ARCH COMPRESSED SIZE ®
924f84fde897 linux/amd64

257.56 MB

_static/installation_mTree_docker_pull.png
- -bash —80x24

Last login: Tue Mar 1 11:25:15 on ttys@01 L

The default interactive shell is now zsh.
To update your account to use zsh, please run “chsh -s /bin/zsh’

For more details, please visit https://sup o 8050. 1
(base) IEEE-MacBook-Pro:~ I]
1.0.11c: Pulling from mtree/mtree
33847f680f63: Already exists
£f810a0db00f: Already exists
2cb7a358a8ff: Already exists
4665bc654896: Already exists
3bc8698f7107: Already exists

Pull complete

Pull complete
15bea82b6335: Pull complete
1bafef290@ecd: Pull complete
d5c734351749: Pull complete
Digest: sha256:b629e4d21bc45887e51107d14739eca@309f0c88a433821c5fe2ecc224026039
Status: Downloaded newer image for mtree/mtree:1.0.1lc
docker.io/mtree/mtree:1.0.11c

(base) -MacBook-Pro:~ IS

_static/installation_unstarted_container.png
Containers / Apps
Images
Volumes

Dev Environments

O\ Search...

‘ﬁ] mTree_auction_examples mtree/mtree:1....
ExITED (137) (N

Sort by v

_static/file.png

_static/installation_wls_kernel_update.png
@ Docker Desktop - Install WSL 2 kemel update X
WSL 2 installation is incomplete.

The WSL 2 Linux kernel is now installed using a separate MSI update package.
Please click the link and follow the instructions to install the kernel update:

https://aka.ms/ws|2kernel.
Press Restart after installing the Linux kernel.

Restart Cancel

_static/mTree_auction_examples_comp_setup.png
Containers / Apps
Images
Volumes

Dev Environments

O\ Search...

Q@ mTree_auction_examples mtree/mtree:1....
exTeD (137) ([N

Sort by v

_images/container_command_prompt.png
— com.docker.cli « docker exec -it 5a4da21908e5aab184ab84622b6d875153b7a9854ab0fb6159101083f...

Last login: Mon Jan 24 21:06:25 on ttys006
docker exec -it 5a4da21908e5aab184ab84622b6d875153b7a9854ab0fb6159101083f148fec?
/bin/sh

The default interactive shell is now zsh.

To update your account to use zsh, please run “chsh -s /bin/zsh’.

For more details, please visit https://support.apple.com/kb/HT208050.

(base) I -MacBook-Pro:~ IS$ docker exec -it 5a4da21908e5aab184ab84622b6d8
75153b7a9854ab@fb6159101083f148fec? /bin/sh

sh-5.0#

_images/delete_button.png
w mTree_container_1.0.10 mtree/mtree:1....
RUNNING PORT: 5000

_static/mTree_logo.png

_static/mTree_small_logo.png

_static/mTree_container_setup.png
mTree_auction_examples mtree/mtree:1.0.11c

CREATION IN PROGRESS ~ PORT: 5000

Optional Settings AN

Container Name

mTree_auction_examples A/\

You can set this to

Ports anything as long as
there are no spaces
Local Host Container Port in your name
5000 5000/tcp
Volumes Copy
. this
Host Path Container Path
exactly
/Users/nalin/Repos/rr @ /auctions @
/ Click "RUN”
once everythin
Press ... to set the “Host is settzlp 9T

Path” to the folder which
contains the mes and
config files

_static/mTree_image.png
Containers / Apps
Images
Volumes

Dev Environments

Images on disk

LOCAL

Q

NAME

mtree/mtree

TAG

1.0.10

[J InUseonly

IMAGE ID

f930eecc737d

12 images Total size: 3.3 GB

CREATED

4 months ago

IN USE

SIZE

735.73 MB

UNUSED

Cleanu

_static/quick_start_check_status_finished.png
mTree> check_status
dmmmmmmmm - L LR T dmmmmmmmmmm - dmmmmmm o - e E e +
| Run Code | Configuration | Run Number | Status | Total Time

_static/minus.png

_static/plus.png

_static/quick_start_check_status_running.png
mTree> check_status

et T e E L e T dommmmmmmmm - dmmmmmm oo Fmmmm oo +
| Run Code | Configuration | Run Number | Status | Total Time
dmmmmmm - - e L L PR TP dommmmmmm - +--——==oc-- mmmmmmmm oo +

| 5b652b | Common Value Auction | 1 |Running)| 0:00:02.061962 |

ST L E LTS dmmmmmmmm—m—m—me—eeeo-o ommmmmmm—-—- do=------- dommmmmmmmmemoe—- +

_static/mTree_auction_examples_shell.png
- com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd440e20 /...

Last login: Thu Feb 3 11:39:38 on ttys000
docker exec -it bd733ad89691f20c74f970e4060eeaebbdal53624dc507f14ed40b19fd440e20 /bin/
sh

The default interactive shell is now zsh.

To update your account to use zsh, please run “chsh -s /bin/zsh’.

For more details, please visit https://support.apple.com/kb/HT208050.

(base) N cdocker exec -it bd733ad89691f20c74f970e4060eeaebbda
153624dc507f14ed40b19fd440e20 /bin/sh

sh-5.0#

_static/quick_start_ls.png
— com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

[sh-5.0# 1s |5
README . md descending_price_auction thespian.log
ascending_price_auction sealed_bid_common_value_auction

common_value_auction tatonnement

sh-5.0#

_static/quick_start_mTree_runner 2.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
... = 2@ - _ _

Il e e NI e Ny N I 1E | e NP e N7 N
I e e FE = R

el s] e [N [N] U N N Ny) I) I N B

Starting prompt...
mTree>

_static/quick_start_log_config.png
Simulation Configuration: {
"mtree_type": "mes_simulation_description",
"name" Common Value Auction",

'
"description”

null,

"environment": "environment.AuctionEnvironment",
“institutions": [
{
“institution": “institution.AuctionInstitution"
}
1,
“number_of_runs": 1,
“agents": [
{
"agent_name": "agent.AuctionAgent",
“number": 5
}

1,

“properties": {},

"data_logging": null,

"source_hash": "4351056b583485f1092c8bd8608535b",
"simulation_run_id": "basic_simulation-2022_02_28-09_32_04_PM",
"mes_directory": "/auctions/common_value_auction"

_static/quick_start_log_rest.png
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1646083924.465222
1646083924.6373026
1646083924.4735575
1646083924.4744372
1646083924.476893
1646083924.5023775
1646083924.5200331
1646083924.5687892
1646083924.5863752
1646083924.5894 env
1646083924.591261
1646083924.6043892
1646083924.606229
1646083924.5880406
1646083924.839744

Environment: Exited directive: logger_setup

Institution (institution.AuctionInstitution 1) : Exited directive: simulation_properties
Environment: About to enter directive: simulation_properties
Environment: Exited directive: simulation_properties

Environment: About to enter directive: setup_institution
Environment: Exited directive: setup_institution

Environment: About to enter directive: setup_agents

Environment: Exited directive: setup_agents

Environment: About to enter directive: start_environment

forward

env done forward

env start auc

Environment: Exited directive: start_environment
ActorAddr-(T|:33709)

Agent (agent.AuctionAgent 1: Exited directive: simulation_properties

_static/quick_start_quitting_mTree.png
[ImTree> quit
Quitting.
sh-5.0#

_static/quick_start_run_config 2.png
Running: basic_simulation.json

importing json

t_environment.TEnvironment

{"mtree_type": "mes_simulation_description", "name": "Basic Tatonnement Run", "i
d": "1", "description": null, "environment": "t_environment.TEnvironment", "inst
itutions": [{"institution": "t_institution.TInstitution"}], "agents": [{"agent_n
ame": "t_seller.TSeller", "number": 5}, {"agent_name": "t_buyer.TBuyer", "number
": 5}], "properties": {"agent_endowment": 10}, "data_logging": null}
f61635984afeb7c398ab14da4163274a

<Message Sender: , Recipients: , Directive: simulation_configurations, Content:
{'mtree_type': 'mes_simulation_description', 'name': 'Basic Tatonnement Run', 'i
d': '1l', 'description': None, 'environment': 't_environment.TEnvironment', 'inst
itutions': [{'institution': 't_institution.TInstitution'}], 'agents': [{'agent_n
ame': 't_seller.TSeller', 'number': 5}, {'agent_name': 't_buyer.TBuyer', 'number
': 5}], 'properties': {'agent_endowment': 10}, 'data_logging': None, 'source_has
h': 'f6f635984afeb7c398ab14da4163274a', 'simulation_run_id': 'basic_simulation-2
022_02_08-08_39_49_PM', 'mes_directory': '/auctions/tatonnement'}>

11e$ 1 %%#%e!s1es!

mTree>
\

_static/quick_start_mTree_runner.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
... = 2@ - _ _

Il e e NI e Ny N I 1E | e NP e N7 N
I e e FE = R

el s] e [N [N] U N N Ny) I) I N B

Starting prompt...
mTree>

_static/quick_start_quitting.png
mTree> quit
Quitting.
sh-5.0#

_static/quick_start_cva_ls.png
- com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

[sh-5.0# 1s | =
config mes
sh-5.0#

_static/quick_start_data_log.png
CoNO U A WN R

s}
12
13
14
3
16
17

1646083925.1102464
1646083925.169673
1646083925.228792
1646083925.255096
1646083925.4306583
1646083925.4324872
1646083925.4516287
1646083925.2871006
1646083925.6392362
1646083925.4928484
1646083925.6707416
1646083925.6476855
1646083925.47394
1646083925.84022
1646083925.6645517
1646083925.8512564
1646083925.8192937

{'bid': 22.28726431852634}
{'bid"': 26.44147706261188}
{'bid"': 26.26618496288426}

{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid
{'bid

26.29437953913788}
47.52505396198343}
47.50420403483543}
47.0373592313149}
27.876615049326382}
29.79582547380325}
43.1330164546055}
29.34444799424905}
30.415430279165037}
42.93607898067013}
38.282917774842105}

{'bid"': 34.30253446345523}
{'bid"': 33.13013649149798}
{'bid": 35.78781525591257}

_static/reference_logfile_config.png
£ basic_config-2022_04_14-07_57_43_PM-R1-experiment.log

1 Simulation Configuration: {

2 "mtree_type": "mes_simulation_description",

3 "name": "Basic Simulation Run",

4 "id": "1",

5 "description": null,

6 "environment": "environment_file.EnvironmentClass",
7 "institutions": [

8 {

9 "institution": "institution_file.InstitutionClass"
10 }

11 5

12 "number_of_runs": 1,

13 "agents": [

14 {

15 "agent_name": "agent_file.AgentClass",

16 "number": 5

17 }

18 1,

19 "properties": {
20 "this_a_property": "this_is_a_property"
21 H
22 "data_logging": "json",
23 "source_hash": "a8f9082695607e88755c27e862ee0e86",
24 "simulation_run_id": "basic_config-2022_04_14-07_57_43_PM"

25 "mes_directory": "/auctions"
+

N
(=)}

_static/reference_logmessage_output.png
- Anything that can be printed can be logged

The UTC timestamp of when The content you
the self.log_message() was pass to the

triggered self.log_message()

_static/reference_address_book_dict.png
The Actor Instance's address_type refers to address contains the mTree Actor address
short_name acts as the

: ' o the Actor type that is used to send messages in the
unique identifier

T T self.send method

'agent_file.AgentClass 1': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress at 0x401b0002e0>,

'component_class': 'agent_file.AgentClass',
‘component_number': 1,
'short_name': 'agent_file.AgentClass 1'},

!

More about the component_class gives the

location of the Actor Class
short_name can be component_number .
code in our mes

A refers to the instance
with the same name. of the Actor Class the

current Actor is.

found in the section

_static/reference_config_referencing.png
simulation_folder g8 = [0 &2 E © v Q
config
mes
basic_config.json l l l
. PYTHON
PYTHON PYTHON
agent_file.py

environment_file. institution_file.py

py

Note how the
EnvironmentClass

Is referenced in the
basic_config.json file. This
informs mTree where to
find the Environment Actor
so it can instantiate it within
the Actor System. A similar
method is used to reference
other Actor types as well.

_static/reference_logs_multipleruns.png
Notice, the first part of the file name for
all files remains the same because they
share the same configurations and were

run at the same time .log and .data files
corresponding to the
T first run of the config file

basic_config-2022_04_20-02_07_11_PM-{R1}-experiment.data
basic_config-2022_04_20-02_07_11_PM-R1}-experiment.log

= basic_config-2022_04_20-02_07_11_PM

2-experiment.log

= basic_config-2022_04_20-02_07_11_PM experiment.data
R

.log and .data files
corresponding to
the second run of
the config file

_static/reference_logs_filenaming.png
Name of the Timestamp of when

Run
the config file was run

number

| ||| [

basic_config-2022_04_14-07_57_43_PM-R1-experiment.data

Log file type
config file

basic_config-2022_04_14-07_57_43_PM-R1-experiment.log

_static/reference_logs_mtreelogging.png
Notice, the entry log
gets logged at an
earlier time than the
exit log.

Actor Type (Environment,
Institution, Agent) of the
message receiving Actor

!

Institution (

Institution (

Actor's short_name

!

Entry statements

inform that the directive:

Actor is about to directive_name
process a particular highlights the name of
message sent to it. the directive the

message was sent 1o

About to enter directive: institution_message R diIi il gRiET I
Exited directive: institution_message

L

Exit statements inform that
the Actor is about to process
a particular message sent to
it.

_static/quick_start_run_simulation 2.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
. e . - . ___ @

I 0 > NI 2 Ve L N I IS E e NS e N s N]

I 0 A e e IE I Il

Bl e ff ellelfllolf N BN] U N N Ny) O Y I N D

Starting prompt...
[ImTree> run_simulation]

B EEbasic_simulation. json

Press <space>, <tab> for multi-selection and <enter> to select and accept

_static/quick_start_run_simulation.png
— com.docker.cli « docker exec -it bd733ad89691f20c74f970e4060eeaebbda153624dc507f14ed40b19fd4...

[sh-5.0# mTree_runner 1=
. e . - . ___ @

I 0 > NI 2 Ve L N I IS E e NS e N s N]

I 0 A e e IE I Il

Bl e ff ellelfllolf N BN] U N N Ny) O Y I N D

Starting prompt...
[ImTree> run_simulation]

B EEbasic_simulation. json

Press <space>, <tab> for multi-selection and <enter> to select and accept

_static/quick_start_run_config.png
— com.docker.cli « docker exec -it 3406e74392cd00935a971e08cf5a0984d7d35487788841fd...

Starting prompt...

[mTree> run_simulation |
Running: basic_simulation.json

environment.AuctionEnvironment

{"mtree_type": "mes_simulation_description", "name": "Common Value Auction", "id
": "1", "description": null, "number_of_runs": 1, "environment": "environment.Au
ctionEnvironment", "institutions": [{"institution": "institution.AuctionInstitut
ion"}], "agents": [{"agent_name": "agent.AuctionAgent", "number": 5}], "properti
es": {}, "data_logging": null}

12@#* | J@#* | J@#* | 1@ * | J@#* | R@#* | 1@ * | J@#* | J@#* | @7 * | 1@#* | J@#* | @7 * | 1@ * | J@#* | @ *
12@#* | Q@#* | J@#* | 1@ * | J@#* | R@#* | @7 * | 1@ * | J@#*

{"mtree_type": "mes_simulation_description", "name": "Common Value Auction", "id
": "1", "description": null, "environment": "environment.AuctionEnvironment", "i
nstitutions": [{"institution": "institution.AuctionInstitution"}], "number_of_ru
ns": 1, "agents": [{"agent_name": "agent.AuctionAgent", "number": 5}], "properti
es": {}, "data_logging": null}

/opt/conda/lib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'agent.py

return self._open_to_write(zinfo, force_zip64=force_zip64)
/opt/conda/1lib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'environm
ent.py'

return self._open_to_write(zinfo, force_zip64=force_zip64)
/opt/conda/1ib/python3.9/zipfile.py:1505: UserWarning: Duplicate name: 'institut
ion.py'

return self._open_to_write(zinfo, force_zip64=force_zip64)
4351056b583485ff1092c8bd8608535b
mTree>

