
mTree
Release 1.0

CSN

Apr 20, 2022

CONTENTS

1 Novice Path 3

2 Contents 5
2.1 Installation . 5
2.2 Quick Start Guide . 9
2.3 Quick Build . 19
2.4 Reference . 19
2.5 Contribute . 49
2.6 Learning Paths . 50

3 Indices and tables 51

i

ii

mTree, Release 1.0

Welcome to the mTree documentation! mTree is a Agent-Based Modelling software in python. If this is your first
time interacting with mTree follow the Novice path mentioned below in order to properly install and test the software.

CONTENTS 1

mTree, Release 1.0

2 CONTENTS

CHAPTER

ONE

NOVICE PATH

Do this step by step

1. Installing Docker Desktop

2. Installing mTree

3. Quick Start Guide

4. Cloning mTree_auction_examples

5. Running mTree_auction_examples

a. mTree_auction_examples container setup

• mTree Container Setup

b. Running mTree_auction_examples container

• Start

• Open Shell

c. Common Value Auction

d. File Structure

e. Running common_value_auction simulation

f. How to know your simulation has finished running?

g. Simulation Results

h. Checking for Errors

i. Quitting

j. Conclusion

3

mTree, Release 1.0

4 Chapter 1. Novice Path

CHAPTER

TWO

CONTENTS

2.1 Installation

In order to run mTree we need to install Docker Desktop first.

2.1.1 Installing Docker Desktop

The links for Docker Desktop installation for different os can be found below.

• Download Docker Desktop

Tip: If you have a Windows machine and end up at the following prompt after installing Docker Desktop -

Fig. 1: WLS 2 Installation Incomplete

Visit the link and only complete Step 4 from the webpage

After completing the Docker Desktop installation, we can start installing mTree

5

https://www.docker.com
https://www.docker.com/products/docker-desktop

mTree, Release 1.0

2.1.2 Installing mTree

You can install mTree by pasting the following code in your Command Prompt, PowerShell or Terminal. However,
make sure to check for the latest version of mTree here, in case the one below is out of date.

docker pull mtree/mtree:1.0.11c

After pasting and running the command in your Command Prompt, your screen should look like something like this

Fig. 2: Your Command Prompt/Terminal/PowerShell after docker pull command

Note: If you get an ERROR message in your Command Prompt try running the command after starting the Docker
Desktop App and see if that helps.

Note: It is important that your Command Prompt is based in the same virtual environment where you have Docker
Desktop installed in order for the docker pull command to work. If you don’t understand what this means, you don’t
have to worry about this.

6 Chapter 2. Contents

https://hub.docker.com/r/mtree/mtree/tags

mTree, Release 1.0

2.1.3 mTree Container Setup

Tip: If you don’t have an mTree simulation that is ready to run or you are new to mTree, visit the Quick Start Guide
before you do this next step.

Open Docker Desktop app on your computer and click Images on the sidebar.

Fig. 3: Images Section on the Docker Desktop App

You should see the mTree image we just downloaded through docker hub in the previous step. In the next step, we are
going to run this image within a small virtualization of the os called a container. We can create our docker container
by clicking RUN on the mTree image.

After that you should see the following window. Follow all the steps, in the image below, before moving on to the next
step.

Once all the instructions in the above image are completed, you should click Containers/Apps on the sidebar. After
hitting Containers/Apps, you should see the following container -

Container Options

Your container comes with several options that can be executed to change its state.

Start

Click START to start your container.

A running docker container should have a green symbol on the left side.

Stop

You can stop running your container by pressing STOP button

2.1. Installation 7

mTree, Release 1.0

Fig. 4: mTree container setup

Fig. 5: Container/Apps Section on the Docker Desktop App

8 Chapter 2. Contents

mTree, Release 1.0

Fig. 6: START button

Fig. 7: A running docker container

Restart

You can restart your container by pressing the RESTART button

Delete

If you want to delete the image, you can press the DELETE button

Open Shell

Once your container is running, you should click CLI button to open the Command Prompt/ shell linked to your
container.

The shell produced by Docker should look similar to the following -

2.2 Quick Start Guide

In this Quick Start Guide, we are going to run a simple mTree simulation while giving an overview of key components
that are necessary for mTree to execute without error. The goal of this guide is to show you how to run an mTree
simulation from start to finish and point out the vital indicators that convey a simulation has run properly.

In order to complete this Quick Start Guide, you would need to the following installed on your computer before you
can begin

1. Docker Desktop - The quick start guide assumes that you have finished Installing Docker Desktop

2. Latest mTree Image - This should be covered in the Installing mTree section.

3. Git - We are going to use git to run a simple mTree simulation later in this section. A simple way to check if you have git installed is to run git --version in your Command Prompt/ Terminal/ PowerShell.

• Mac Users

Fig. 8: STOP button

2.2. Quick Start Guide 9

mTree, Release 1.0

Fig. 9: RESTART button

Fig. 10: DELETE button

Fig. 11: CLI button

Fig. 12: docker shell

10 Chapter 2. Contents

mTree, Release 1.0

– If your Terminal says it doesn’t recognize the command, which is very unlikely, visit the Git
Download for macOS website to download git.

– You’ll have several options on how to install git, however, it is recommended to use homebrew
route, check out this git homebrew download video on how to do this.

• Windows Users

– If it doesn’t recognize the command, suggesting you don’t have git, visit the Git Download for
Windows website and follow the directions highlighted in this windows git download video .

4. VSCode - We recommend using an Integrated Development Environment (IDE) to edit and view mTree simu-
lation code. Although, VSCode is versatile and great, however, any IDE of your choice should also work.

2.2.1 Cloning mTree_auction_examples

We are going to clone the mTree_auction_examples repository and run one of the examples to make sure mTree is
running properly.

Open your Command Prompt and navigate to an apporpriate place within your file system using the cd command and
run the following code. If you have not used Command Line before you can check out the tip below or you could
simply run the following code and it will create an mTree_auction_examples folder in your home directory where
the Desktop folder exists.

git clone https://github.com/nalinbhatt/mTree_auction_examples.git

This will create an mTree_auction_examples folder at your specified location.

Tip: If you are new to command line you can check out the following links on how to navigate your file system -

Terminal for Beginners (Macs)
A Beginner’s Guide to the Windows Command Prompt (Windows)

Although, the following resources provide a great background which might be helpful later, nevertheless, for these next
few steps, you only need to know how the cd command works.

2.2.2 Running mTree_auction_examples

In order to run this simulation we need to create a docker container using the Docker Desktop app that we downloaded
in Installation section.

2.2. Quick Start Guide 11

https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://www.youtube.com/watch?v=ZM3I16Z-lxI
https://git-scm.com/download/win
https://git-scm.com/download/win
https://www.youtube.com/watch?v=4xqVv2lTo40
https://code.visualstudio.com
https://github.com/nalinbhatt/mTree_auction_examples.git
https://medium.com/@grace.m.nolan/terminal-for-beginners-e492ba10902a
https://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/

mTree, Release 1.0

mTree_auction_examples container setup

Follow all the steps highlighted in the mTree Container Setup section and set the Host Path to the
mTree_auction_example folder (which you cloned in the previous step).

• If you installed mTree_auction_example by navigating to somewhere in your file system, you are going to have
to locate your folder in finder window by reviewing the steps you took.

• If you did a simple git clone without ever using the cd command then you need navigate to your home folder
(the folder which contains your Desktop) and select the mTree_auction_examples folder.

After finishing the setup process, click Container/Apps on the sidebar of Docker Desktop. There should be a container
by the name mTree_auction_examples present.

Fig. 13: Your Containers/Apps section should display a container similar to this with the name you chose

Running mTree_auction_examples container

Start the container and open the shell. More details on how to do this are covered in Container Options under Start
and Open Shell.

Your shell should look some version of this -

Fig. 14: mTree_auction_examples shell produced by clicking the CLI button

Run the following commands to view the underlying files in the folder.

Mac

12 Chapter 2. Contents

mTree, Release 1.0

ls

Windows

dir

You should see the following subfolders-

Fig. 15: Folders inside mTree_auction_examples

Common Value Auction

One of the subfolders present should have the name common_value_auction. Further information about the auction
style and description can be found in the Common Value Auction section of Learning Paths.

In your mTree_auction_examples container shell type in the following command to set the current directory to com-
mon_value_auction.

cd common_value_auction

File Structure

After setting common_value_auction as the current directory, run ls or dir and you should see the following folders.

1. config

2. mes

3. logs

Fig. 16: Folders inside common_value_auction

2.2. Quick Start Guide 13

mTree, Release 1.0

Note: In order to properly run an mTree simulation you need to set the current directory to the folder which contains
a config, mes, and a logs folder. mTree looks for these particular folders to run the simulation. For our example, this
is the common_value_auction folder inside mTree_auction_examples.

Tip: In the future, when designing your own container, you can set the Host Path directly to the folder containing the
config and mes folder. That way you don’t have to navigate to the desired directory within the docker shell.

The config folder folder (short for configurations) contains your JSON config files which are used to instantiate mTree
Actors defined in the mes folder.

The mes folder (short for Microeconomic System) containes the python files where you define the different Actor
classes, namely - the Environment , Institution and Agent.

Warning: It is critical that your simulation folder contains a config folder, with a JSON config file inside, and
a separate mes folder with python files inside, which contain Environment , Institution and Agent code. In the
absence of any of these your mTree simulation will not run.

Inside the config folder in the common_value_auction auction example, you should see a basic_simulation.json file.
This is the config file which we will run.

For the next step we want to make sure that our current directory is common_value_auction so if you used the cd
command to change the directory to config and view its contents, we want to go up a directory using the following
command to make sure we are in the right directory.

cd ..

Running common_value_auction simulation

We can type the following command into the shell to start mTree.

mTree_runner

You should see something similar to this.

Fig. 17: mTree_runner window

14 Chapter 2. Contents

mTree, Release 1.0

Enter the following to start the selection process for the config file.

run_simulation

Your window should look like this.

Fig. 18: run_simulation window

Click <enter> to select and run the basic_simulation.json file. Your output should look something similar to this.

How to know your simulation has finished running?

mTree provides a check_status command that allows you to inquire the state of the simulation from the shell or
console. Run the following command in your shell to see the state of the simulation. If you wish to know more about
this command visit mTree Simulation State section.

check_status

Note: You can enter the check_status command multiple times to view the state of your simulation.

Depending on the when you entered the check_status command, you should see any one of the following screens.

Once we have identified that our simulation has finished we can move on to the next step which involves

Simulation Results

Ideally when a simulation is run, you should setup Actors in such a way that they constantly log their states to .log and
.data files. This allows us to analyze how Actors behaved in our system, what decisions they made, and what effects
those decisions had on the system as whole.

2.2. Quick Start Guide 15

mTree, Release 1.0

Fig. 19: Running basic_simulation.json file

Fig. 20: This indicates our simulation is still running

Fig. 21: This indicates our simulation has finished running and we can move to the next step and view our simulation
results.

16 Chapter 2. Contents

mTree, Release 1.0

logs

The logs folder, inside your simulation folder (which in our case is common_value_auction), is where the output from
your simulation gets stored. You should see a file ending in .log and a file ending in .data.

More on how these files are named can be found here.

Note: In the figure below, we use VSCode to open the generated log files. However, no IDE is necessary to open these
files and your notepad should also work. That being said, we still advise using an IDE, like VSCode, to interact with
an mTree simulation, since they make viewing and editing files of different formats more intuitive.

The first few lines of you .log file document the config file parameters which were used to run the simulation

Fig. 22: basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.log

The rest of your .log file should look as follows.

Your .data file should look something like this -

Note: Don’t worry if the log files on your end don’t match the ones shown here word for word. Since mTree is a
concurrent Agent-Based Modelling software, it is common for different Actors to log asynchronously to the same .log
and .data files, giving them an out of order look.

2.2. Quick Start Guide 17

https://code.visualstudio.com

mTree, Release 1.0

Fig. 23: basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.log

Fig. 24: basic_simulation-2022_02_28-09_32_04_PM-R1-experiment.data

18 Chapter 2. Contents

mTree, Release 1.0

Checking for Errors

You can use the ctrl F (Windows) or cmd F (Mac) command to search for Error messages in the .log file. If there
are no results then it is likely that your simulation has run properly. If there are instances of Error messages then check
out the Error Handling section.

Warning: If you see no results for Error but your mTree log stops logging in the middle of the simulation, then
it is still possible you have logic errors that don’t terminate the process. Luckily, you don’t have to worry about that
in the common_value_auction auction example.

Quitting

Once the simulation has ended, you can run quit command in the docker shell to kill mTree. The quit command is
used to kill all mTree processes as well as delete all Actor instances previously created to run the simulation.

quit

Your console should look like some version of this -

Fig. 25: Quitting mTree

Conclusion

Congratulations on successfully running your first mTree simulation! If you want to know how this example was built
or you want to find more projects like this, checkout Common Value Auction or Learning Paths sections. If you want
to view a more in-depth case which builds an mTree project from scratch, checkout Quick Build.

2.3 Quick Build

2.4 Reference

Several sections are under development. . .

2.4.1 Theory of Operations

• Contains a description and background of Microeconomic Systems and how mTree allows you to define different
actors

• Goes in depth as to why mTree.

• Need to define why messages are necessary

2.3. Quick Build 19

mTree, Release 1.0

2.4.2 messages

In the Actor system, Actors only have access to their personal states. As a result, the only way Actors can change their
state is through some constant design or by recieving new information from a different Actor.

In mTree, Actors send messages using the Message class which needs to be imported at the top of each file that
includes the code for your mTree Actor.

The Message class is used to create a Message object, which is then used to send a message to another Actor. The
following code snippet shows how crafting and sending a basic message looks like. To know more about the neccessary
contents of messages check out How to send a message.

new_message = Message() #creates a message object
new_message.set_sender(self.myAddress) #self.myAddress is the agent's personal mTree␣
→˓Actor address
new_message.set_directive("institution_message") #directives are used by message␣
→˓receiving agents to recieve specific messages
message_payload = "any_python_data_type_would_do"
new_message.set_payload(message_payload) #you can set the payload to any python data type

self.send(reciever_address, new_message) # This method is used to finally send your␣
→˓message

start_environment

The start_environment message is the very first message that gets sent by the mTree_runner to the Environment
Actor (specified in the config folder file) after mTree initializes everything.

#inside simulation_folder/mes/environment_file.py

@directive_enabled_class
class EnvironmentClass(Environment):

def __init__(self):
pass

@directive_decorator("start_environment")
def start_environment(self, message:Message):

pass

Tip: The start_environment directive can be viewed as the genisis message which gets the ball rolling for all other
subsequent messages. Therefore, it is recommended that the directive is used to initialize the environment state as well
as send important state information to other Actors.

Warning: All mTree simulation need to have a start_environment directive specified in the Environment Actor
in order to start their simulation. However, messages sent in the start_environment directive as well as other
directives can be based on your design.

20 Chapter 2. Contents

mTree, Release 1.0

How to send a message

In order to send a message, the Actor must first receive a message in a directive first. Once in a directive, the key
elements for a message are -

• Sending Actor’s address: Usually accessed by self.myAddress

• Content: This could be any python data type message (None types also work) that you want the other Actor to
recieve.

• Receiving Actor’s address: This could be accessed several ways, see code example in directive or checkout
address book

Here is how you can define and send a message-

new_message = Message() #creates a message object
new_message.set_sender(self.myAddress) #self.myAddress is the agent's personal mTree␣
→˓Actor address
new_message.set_directive("institution_message") #directives are used by message␣
→˓receiving agents to recieve specific messages
new_message.set_payload("any_python_data_type_would_do") #you can set the payload to any␣
→˓python data type

self.send(reciever_address, new_message) # This method is used to finally send your␣
→˓message

In the example below, we continue the start_messsage directive method in the Environment and send a message
to the Institution.

@directive_enabled_class
class EnvironmentClass(Environment):

def __init__(self):
pass

@directive_decorator("start_environment")
def start_environment(self, message:Message):

your_message = Message() #create a message object
your_message.set_sender(self.myAddress) #self.myAddress is the agent's personal␣

→˓mTree Actor address
your_message.set_directive("institution_message") #directives are used by␣

→˓message receiving agents to recieve specific messages
your_message.set_payload("any_python_data_type_would_do") #you can set the␣

→˓payload to any python data type

#checkout the <address_book> section in References to find how different Actors␣
→˓access each other's addresses

receiver_address = self.address_book.select_addresses({"short_name":"institution_
→˓file.InstitutionClass 1"})

(continues on next page)

2.4. Reference 21

mTree, Release 1.0

(continued from previous page)

self.send(receiver_address, your_message) # This method is used to finally send␣
→˓your message

Directives / Receiving Messages

Directives are special class methods defined in Actor classes (contained in .py files inside your mes folder). They are
used to view messages sent to the Actor.

Actors need to have the following in their classes to recieve a particular message.

@directive_decorator("directive_name")
def directive_name(self, message: Message):

message_payload = message.get_payload() #accesses the message payload
message_sender_address = message.get_sender() #access the sender agent's address

Warning: In order to recieve a messsage your directive name and your method name need to be the same, other-
wise, mTree throws the following error.

Note: For the following example our Actor is set as the Institution type, however, the message receiving process is
applicable for any type.

In this example below, the institution receives a message sent by the Environment in send message.

@directive_enabled_class
class InstitutionClass(Institution):

def __init__(self):
pass

@directive_decorator("institution_message")
def institution_message(self, message:Message):#The method name needs to be the same␣

→˓as the directive name set in quotes above

message_payload = message.get_payload() #accesses the message payload
message_sender_address = message.get_sender() #access the sender agent's address

#You can find more on logging in the <logs> section in References
self.log_message(f"message_payload = {message_payload}\n"

f"message_sender_address = {message_sender_address}\n")

Your log file should produce the following output -

22 Chapter 2. Contents

mTree, Release 1.0

1645122024.0900638 message_payload = any_python_data_type_would_do

1645122024.0937853 message_sender_address = ActorAddr-(T|:43253)

2.4.3 Actor Description

Imports

While coding mTree Actors, there are several features that mTree provides Actor classes the ability to interact with
within the Actor world.

Necessary Imports

Each file that contains the code for your mTree Actors (Environment/Institution/Agent) needs to have the following
imports in order to work properly. These imports provide the Actors with a range of capabilities including but not
limited to communicating via messages.

from mTree.microeconomic_system.environment import Environment #Parent class for␣
→˓Environment Actors
from mTree.microeconomic_system.institution import Institution #Parent class for␣
→˓Institutoin Actors
from mTree.microeconomic_system.agent import Agent #Parent class for Agent Actors
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message #Message class allows you to␣
→˓create and send messages
import logging #Allows you to log messages to log files

Additional Imports

mTree also provides the following additional imports when running mTree in a container.

import math
import random

import time
import datetime
import sympy

General Methods and Capabilities (better name under way)

Each Actor comes with a general set of capabilities, often represented in the form of class variables and methods
available to the Actor. On top of that, there are Actor specific class variables and methods that mTree reserves for
the Environment Actor, which might not be available to Institution and Agent Actors. Some of these methods have
individual sections such as Message Sending, address_boook, and logging, however, some Actor specific methods
have been listed under the different Actor sections.

The four main capabilities have been listed below -

1. Message Sending- covers how and what Actors can send to each other

2. Address Book- covers how to keep track of other Actor’s address(without which you can’t send messages)

2.4. Reference 23

mTree, Release 1.0

3. Logging- covers how to output interactions taking place inside a simulation

4. short_name- unique identifier of the Actor, used to navigate the address_book and keep track of Actors.

short_name

The short_name is a simple unique identifier created by mTree for each Actor within the system. The short_name
can be used for identifying which Actor logged the data as well as for navigating the address_book.

Note: short_name was created to distinguish between multiple instances of the same Actor Class (an example
of an Actor Class can be InstitutionClass from the message sending example above). Therefore, currently self.
short_name is not accessible to the Environment Actor because there can only be one and doesn’t need distinguising.
However, newer versions of mTree plan on instilling short_name identifier in all Actors for uniformity purposes.

The Actors can access their individual short_name the following way -

self.short_name #since it is a class variable, it can be called anywhere in the Actor␣
→˓class

if we use the self.log_message(content) method to log this variable we should observe the following output -

self.log_message(self.short_name) #more about this method can be found in the log_
→˓message section

Output

The short_name can identify where the Actor code is located in the mes folder, which Actor Class within that file
was used to create the Actor, and, finally, which instance of the Actor Class is the current Actor. The last part is useful
because there can be multiple instances of the same Actor Class and the short_name allows use to differentiate among
them.

Environment

Here is a code snippet that you can modify to construct your mTree Environment Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.EnvironmentClass",
#Example - environment_file.InstitutionClass (assuming the filename is set to␣
→˓environment_file.py)

(continues on next page)

24 Chapter 2. Contents

mTree, Release 1.0

Fig. 26: If you log the self.short_name in an Agent Actor you would can see any one of the following outputs.

Fig. 27: If you log the self.short_name in an Institution Actor you would can see any one of the following outputs.

2.4. Reference 25

mTree, Release 1.0

(continued from previous page)

@directive_enabled_class
class EnvironmentClass(Environment): #you can change the class name to anything, as long␣
→˓as the parent class (Environment) stays same
def __init__(self):

pass

@directive_decorator("start_environment")
def start_environment(self, message: Message): # The first message sent by mTree_

→˓runner, check messages section to find out more

pass

Tip: You can change the class name of the above Actor EnvironmnetClass to anything as long as the parent class
Environment stays the same.

Institution

Here is a code snippet that you can modify to construct your mTree Institution Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.InstitutionClass",
#Example - institution_file.InstitutionClass (assuming the filename is set to␣
→˓institution_file.py)
@directive_enabled_class
class InstitutionClass(Institution): #you can change the class name to anything, as long␣
→˓as the parent class (Institution) stays same
def __init__(self):

pass

Tip: You can change the class name of the above Actor InstitutionClass to anything as long as the parent class
Institution stays the same.

26 Chapter 2. Contents

mTree, Release 1.0

Agent

Here is a code snippet that you can modify to construct your mTree Agent Actor.

#NOTE: this python file needs to be inside the /mes folder

#These imports can also be found in the Imports section above
from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

#In the config, the class below
#should be referenced as "<.py filename>.AgentClass" ,
#Example - "institution_file.InstitutionClass" (assuming the filename is set to␣
→˓institution_file.py)
@directive_enabled_class
class AgentClass(Agent): #you can change the class name to anything, as long as the␣
→˓parent class (Agent) stays same
def __init__(self):

pass

Tip: You can change the class name of the above Actor AgentClass to anything as long as the parent class Agent
stays the same.

2.4.4 config folder

There needs to be a config folder inside each mTree simulation folder. Within the config folder there needs to be
a .json file that contains your simulation configurations. Although, the name of the config folder cannot be changed,
nevertheless, your .json config file, can have any name.

config file

Your config file is a .json file containing a json dictionary. Inside this json dictionary we define the key parameters
that mTree uses to instantiate the various Actors as well as any simulation specific variables that our Actors might
need.

{"mtree_type": "mes_simulation_description",
"name":"Basic Simulation Run",
"id": "1",
"environment": "environment_file.EnvironmentClass",
"institution": "institution_file.InstitutionClass",
"number_of_runs": 1,

(continues on next page)

2.4. Reference 27

mTree, Release 1.0

(continued from previous page)

"data_logging": "json",
"agents": [{"agent_name": "agent_file.AgentClass", "number": 5}],
"properties": {"this_a_property":"this_is_a_property"}
}

mTree use

{"mtree_type": "mes_simulation_description",
"name": "any name should do",
"id": "1"
}

Although, the first three keys are used by mTree on a systemic level, however, even if you don’t include the three keys,
mTree assigns default values for them. More importantly, it is still highly recommended that you pass some values for
them, even the ones suggested above.

Referencing different actors

Within the config file we inform mTree which code we want to use to spawn Actors.

Fig. 28: The figure shows how an Environmnet Actor(EnvironmentClass) is referenced within a config file.

28 Chapter 2. Contents

mTree, Release 1.0

Environment

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass" }

After selecting and running a config file, the mTree_runner looks for the Environment Actor code inside the mes
folder. The value of the "environment" key - “environment_file.EnvironmentClass” informs mTree to spawn the
Environment Actor using the EnvironmentClass class present inside the environment_file.py file, which in turn should
be located inside the mes folder.

Note: Unlike Institutions and agents, mTree only allows for a single Environment per simulation. Also, each
simulation needs to have an Environment Actor because the very first message that gets sent by the system is the
start_environment message.

Institution

Single Instance

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institution": "institutin_file.InstitutionClass"
}

After selecting and running a config file, the mTree_runner looks for the Institution Actor(s) code inside the mes
folder. The value of the "institution" key - “institution_file.InstitutionClass” informs mTree to spawn the Institu-
tion Actor(s) using the InstitutionClass class present inside the institution_file.py file inside the mes folder.

Multiple Instances

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institutions": [{"institution": "institution_file.InstitutionClass", "number": 2}]
}

For multiple instances of the same InstitutionClass Actor we use the above format where the key changes from
"institution" to "institutions", and the corresponding value is a list of dictionaries. Within the institution
dictionary, the value of the "institution" key specifies where the Institution Actor code is and the value of the
"number" key specifies - how many to spawn.

To sum it all up, the above code should create 2 Institution Actors using the same code present inside
mes/institution_file.py with the class name - InstitutionClass.

Multiple Institutions

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",

(continues on next page)

2.4. Reference 29

mTree, Release 1.0

(continued from previous page)

"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institutions": [{"institution": "institution_file.InstitutionClass", "number": 1},

{"institution": "institution_file.DifferentInstitutionClass", "number":␣
→˓1}]
}

Notice that the "institutions" key has a list as its corresponding value. Inside this list, you can insert the different
types of Institution Actor you want to create as separate dictionaries. This is useful if you have two separate coded
institution classes that serve different roles in your microeconomic system.

You can also control the number of instances of each particular Institution Actor using the "number" key.

Agents

The reference for Agents works exactly like references for Institutions.

Single Instances

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institution": "institutin_file.InstitutionClass",
"agent": "agent_file.AgentClass"
}

After selecting and running a config file, the mTree_runner looks for the Agent Actor(s) code inside the mes folder.
The value of the "agent" key - “agent_file.AgentClass” informs mTree to spawn the Agent Actor(s) using the Agent-
Class class present inside the agent_file.py file inside the mes folder.

Multiple Instances

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institution": "institutin_file.InstitutionClass",
"agents": [{"agent": "agent_file.AgentClass", "number": 2}]
}

For multiple instances of the same AgentClass Actor we use the above format where the key changes from "agent" to
"agents", and the corresponding value is a list of dictionaries. Within the agent dictionary, the value of the "agent"
key specifies where the Agent Actor code is and the value of the "number" key specifies - how many to spawn.

To sum it all up, the above code should create 2 Agent Actors using the same code present inside mes/agent_file.py
with the class name - AgentClass.

Multiple Agents

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",

(continues on next page)

30 Chapter 2. Contents

mTree, Release 1.0

(continued from previous page)

"institution": "institutin_file.InstitutionClass",
"agents": [{"agent": "agent_file.AgentClass", "number": 1},

{"agent": "agent_file.DifferentAgentClass", "number": 1}]
}

Notice that the "agents" key has a list as its corresponding value. Inside this list, you can insert the different types of
Agent Actor you want to create as separate dictionaries. This is useful if you have two separate coded agent classes
that serve different roles in your microeconomic system.

You can also control the number of instances of each particular Agent Actor using the "number" key.

Simulation Properties/ self.get_properties()

Users are allowed to specify additional information to the "properties" dictionary. This dictionary is reserved for
including information that is simulation specific and can be used to initialize different agent types, initialize different
institutions, and much more. Check out one of the Learning Paths to view how properties can be used to prevent hard
coding Actors.

{"mtree_type": "mes_simulation_description",
"name": "Basic Simulation",
"id": "1" ,
"environment": "environment_file.EnvironmentClass",
"institution": "institutin_file.InstitutionClass",
"agents": [{"agent": "agent_file.AgentClass", "number": 1},

{"agent": "agent_file.DifferentAgentClass", "number": 1}],
"properties": {"agent_types": ["buyer", "seller"],

"agent_endowment": 30,
"institution_type": ["sealed_bid_auction", "common_value"]
}

}

Accessing Properties

Information mentioned in the "properties" dictionary can be accessed by the Environment Actor using the follow-
ing code.

self.get_properties() # this should return the entire properties dictionary.

Example

If we wanted to access the properties mentioned above, we could use the following code.

agent_type_list = self.get_properties()["agent_types"] #list, accessing the different␣
→˓agent types in the system
agent_endowment = self.get_properties()['agent_endowment'] #int, accesing the agent␣
→˓endowment
institution_type_list = self.get_properties()['institution_type'] #list, institution_
→˓type_list

Note: Only the Environment Actor has access to the self.get_properties() method and can choose to pass

2.4. Reference 31

mTree, Release 1.0

relevant information (defined in the config) regarding the an Actor’s initial states to them.

2.4.5 address book

The address_book is an mTree object that stores and manages addresses of all the Actors that are initialized in the
config folder file. Each Actor in the system has an address_book object instantiated when they are spawned. However,
at the beginning, only the Environment Actor’s address_book has the complete list of Actor addresses in the system.

The Environment Actor can then choose to pass the addresses to different Institution and Agent Actors across the
system. We have listed below the different methods that this address_book object has and how to access them.

How to access the address_book

The address_book object can be accessed by the Actors in the following ways

self.address_book()

self.address_book is a class variable that gets set by mTree for each Actor prior to sending the start_environment
directive message and points to the Actor’s own address_book object. Since self.address_book is a class variable,
it can be accessed everywhere.

Structure

Below we evaluate one of the key address_book methods and explore how addresses are stored.

all_addresses = self.address_book.get_addresses() #This code should return a dictionary␣
→˓of the following format
self.log_message(all_addresses) #since mTree suppresses print statements, logging is the␣
→˓only way to get info out

#The above message should output the following dictionary
#Notice all the keys are the different actor's short_names and the value of each
#key is another dictionary containing other important distinguishing information about␣
→˓the Actor

{'institution_file.InstitutionClass 1': {'address_type': 'institution', #The Actor's␣
→˓type

'address': <thespian.actors.ActorAddress␣
→˓object at 0x401aff5c70>, #The Actor's address

'component_class': 'institution_file.
→˓InstitutionClass', #Where the code for ActorClass is located

'component_number': 1, #instance number of␣
→˓the Actor

'short_name': 'institution_file.
→˓InstitutionClass 1'}, #Actor short_name
'agent_file.AgentClass 1': {'address_type': 'agent',

'address': <thespian.actors.ActorAddress object at␣
→˓0x401b0002e0>,

'component_class': 'agent_file.AgentClass',
'component_number': 1,
'short_name': 'agent_file.AgentClass 1'},

(continues on next page)

32 Chapter 2. Contents

mTree, Release 1.0

(continued from previous page)

'agent_file.AgentClass 2': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b000460>,
'component_class': 'agent_file.AgentClass',
'component_number': 2,
'short_name': 'agent_file.AgentClass 2'},

'agent_file.AgentClass 3': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b0004f0>,
'component_class': 'agent_file.AgentClass',
'component_number': 3,
'short_name': 'agent_file.AgentClass 3'},

'agent_file.AgentClass 4': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b000580>,
'component_class': 'agent_file.AgentClass',
'component_number': 4,
'short_name': 'agent_file.AgentClass 4'},

'agent_file.AgentClass 5': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b000610>,
'component_class': 'agent_file.AgentClass',
'component_number': 5,
'short_name': 'agent_file.AgentClass 5'}
}

We are going to evaluate a single entry in this address_book dictionary and explore what each information means in
the figure below.

Fig. 29: More about short_name can be found in the short_name section.

Note: For the rest of the address_book section, we will refer to keys in the dictionary above as entries and their
corresponding value, which is another dictionary, as the description dictionary.

2.4. Reference 33

mTree, Release 1.0

Warning: Currently all Actor Instances except the Environment Actor have an entry in the address_book. As a
result, the only way to get the Environment Actor’s address is to receive a message from it and access the address
using message.get_sender() method inside the directive you receive a message from the Environment Actor.

Methods

The address_book object provides several methods.

self.address_book.get_addresses()

The following returns a dictionary with all address_book elements exactly like the one explored in Structure section
above.

self.address_book.get_addresses() #This code should return a dictionary of the following␣
→˓format

#the get_addresses() method returns all the elements stored in the .addresses variable␣
→˓inside the address_book object
#another way to access the same dictionary can be
#self.address_book.addresses

self.address_book.merge_addresses(addresses)

This method allows you to merge your address_book with another address_book. The goal of this method is to append
your personal address_book using the addresses provided as input.

Input: dict

The addresses argument in self.address_book.merge_addresses(addresses) needs follow the address_book
dictionary structure as shown in the Structure section.

Output: None

Although,``self.address_book.merge_addresses(addresses`` method does not return anything, nevertheless, it updates
the Actor’s personal address_book object to include the new entries mentioned in the addresses input dictionary.

Tip: Since, at first, only the Environment Actor has a complete address_book with entries of all the
Actors in the system. Consequentially, the Environment can access the address_book dictionary using
self.address_book.get_addresses() and pass this to other Actors by setting it as the message payload. The Actor
receiving the address_book dictionary can then add those addresses to its personal address_book using self.
address_book.merge_addresses(address_book_dictionary)

Example: Environment sends Institution the address_book

34 Chapter 2. Contents

mTree, Release 1.0

self.address_book.get_agents()

The following returns a dictionary similar to the one in self.address_book.get_addresses(), however, only
includes entries whose description dictionary “address_type” key has the value - “agent”

self.address_book.get_agents()#Only returns the addresses of Agent Actors

Output: float

The code above should return the following dictionary -

{'agent_file.AgentClass 1': {'address_type': 'agent', # all elements are 'agents'
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b0002e0>,
'component_class': 'agent_file.AgentClass',
'component_number': 1,
'short_name': 'agent_file.AgentClass 1'},

'agent_file.AgentClass 2': {'address_type': 'agent',
'address': <thespian.actors.ActorAddress object at␣

→˓0x401b000460>,
'component_class': 'agent_file.AgentClass',
'component_number': 2,
'short_name': 'agent_file.AgentClass 2'},

... }

self.address_book.get_institutions()

The following returns a dictionary similar to the one in self.address_book.get_addresses(), however, only
includes entries whose “address_type” key has the value - “institution”

self.address_book.get_institutions()#Only returns the addresses of Agent Actors

Output: dict

The code above should return the following dictionary

{'institution_file.InstitutionClass 1': {'address_type': 'institution',
'address': <thespian.actors.ActorAddress object␣

→˓at 0x401aff5c70>,
'component_class': 'institution_file.

→˓InstitutionClass',
'component_number': 1,
'short_name': 'institution_file.

→˓InstitutionClass 1'},
...
}

2.4. Reference 35

mTree, Release 1.0

self.address_book.num_agents()

The following sums up the number of entries with {"address_type":"agent"} in their description. So if there are
5 Agent Actors in our simulation, the following code should output-

self.address_book.num_agents()

Output: float

5

self.address_book.num_institutions()

The following sums up the number of entries with {"address_type":"institution"} in their description. So if
there is a single Institution Actor in our simulation, the following code should output-

self.address_book.num_institutions()

Output: float

1

self.address_book.select_addresses(selector)

The self.address_book.select_addresses(selector) outputs a list of mTree addresses based on the selector
that is provided.

Input: selector(dict)

The selector is a dictionary that can only have one of the following key and value pairs.

Table 1: Selector
key value
“address_type” “agent”/”institution”
“short_name” “file_name.ActorClass instance(int)”

The purpose of the selector is to help address_book object select specific mTree addresses from the entries that have
the same value as the selector inside their description dictionaries.

#address_type selectors
agent_addresses_selector = {"address_type": "agent"}
institution_address_selector = {"address_type": "institution"}

#short_name selectors
agent_short_name_selector = {"short_name": "agent_file.AgentClass 1"}

#if you pass any of these as an input to
self.address_book.select_addresses(agent_addresses_selector)
#the above code would output either a list of addresses or a single address

Output: list or address

36 Chapter 2. Contents

mTree, Release 1.0

Depending on the number of entries in the address_book that agree with the selector, self.address_book.
select_addresses(selector) returns either a list of mTree_addresses or a single mTree_address.

Example: List of Addresses Returned

#we want to select all mTree Actor addresses of those that have "address_type" as "agent
→˓" in their
#description dictionaries
selector = {"address_type": "agent"} #we create a selector dictionary
agent_addresses = self.address_book.select_addresses(selector)

self.log_message(agent_addresses) #more about self.log_message can be found in the self.
→˓log_message section

Output

#Assuming we use the same config for all examples
#the above code should produce a similar list in the log file
#since we are using a config file with 5 Agent Actors, we get a list with 5 elements
[<thespian.actors.ActorAddress object at 0x40180f5a30>, <thespian.actors.ActorAddress␣
→˓object at 0x40180f5cd0>, <thespian.actors.ActorAddress object at 0x40180f6e80>,
→˓<thespian.actors.ActorAddress object at 0x40180f6e20>, <thespian.actors.ActorAddress␣
→˓object at 0x40180f6d90>]

Example: Single Address Returned

#we want to select all mTree Actor addresses of those that have "address_type" as
→˓"institution" in their
#description dictionaries
#since we are using a config file with 1 Institution Actor, we get a single address␣
→˓returned

selector = {"address_type": "institution"}
institution_address = self.address_book.select_addresses(selector)

self.log_message(institution_address) #more about self.log_message can be found in the␣
→˓self.log_message section

Output

#Assuming we use the same config for all examples,
#we know that there is only 1 Institution Actor in our system.
#Therefore the above code should produce a the following in the log file

ActorAddr-LocalAddr.1 #This is mTree address for the institution and can be used in the␣
→˓message sending proceess

Example: Using short_name selector

The short_name selector is useful when the Actor wants to send a message specifically to another Actor. Since, no
two Actors, share a common short_name, self.address_book.select_addresses(selector) should return a
single address.

#we want to select the mTree address of the Actor with the short_name - "institution_
→˓file.InstitutionClass 1"

(continues on next page)

2.4. Reference 37

mTree, Release 1.0

(continued from previous page)

#since short_names are unique to each Actor instance, the following should return a␣
→˓singe Actor address

selector = {"short_name": "institution_file.InstitutionClass 1"} # more on how short_
→˓names get assigned can be found in the short_name section
institution_address = self.address_book.selector(selector)

self.log_message(institution_address) #more about self.log_message can be found in the␣
→˓self.log_message section

Output

#Note this is should be the same as the output produced in the Example where our␣
→˓selector was {"address_type": "institution"}
ActorAddr-LocalAddr.1 #This is mTree address for the institution and can be used in the␣
→˓message sending proceess

Note: In most cases, self.address_book.select_addresses(selector) produces a for loop compatible list
of addresses(if there is more than one entry for which the selector applies to). Consequently, this method becomes
useful when you want to send message to multiple Actors with varying payloads. However, if you want to send the
same message(with no change in directive or payload) to a group of Actor types, you might want to consider using
self.address_book.broadcast_message(selector, message) instead.

Example: Combining .select_addresses(selector) and Message()

In the code example below, we try to send each Agent Actor slightly different value estimates for a common value
good. More about this code can be found in the Common Value Auction section in Learning Paths.

Institution Code Here the institution sends slightly different value estimates of a common value good to all the Agent
Actors in its address_book

#This is an imagined directive that our institution finds itself in

@directive_decorator("institution_directive")
def institution_directive(self, message: Message):

#We are assuming that the Institution Actor has already received a copy of the
#Environment Actor's address_book which it has merged with its own using the
.merge_addresses(addresses) method.
#We also assume we are using the same config with 5 Agent Actors.
agent_address_list = self.address_book.select_addresses({"address_type": "agent"}) #␣

→˓produces a list of 5 Agent Actor addresses

for agent_address in agent_address_list: #we iterate over the addresses

#Assume self.common_value and self.error are float values set in
#a previous directive
lower_bound = self.common_value - self.error
upper_bound = self.common_value + self.error

#random.uniform will produce a different value_estimate b/w [lower_bound, upper_
→˓bound] for each iteration of the for loop

(continues on next page)

38 Chapter 2. Contents

mTree, Release 1.0

(continued from previous page)

value_estimate = random.uniform(lower_bound, self.common_value + self.error)
→˓#The random function should return a number between () and 20 with uniform probability

#The dictionary we send to each agent
payload_dict = {"value_estimate": value_estimate, "error": self.error}

agent_message = Message()#create a message object
agent_message.set_directive("receive_value_estimate") #this is the directive␣

→˓where each Agent can receive messages
agent_message.set_sender(self.myAddress)#set the sender to the Actor's personal␣

→˓address
agent_message.set_payload(payload_dict) #pass the payload dict we just defined

self.send(agent_address, agent_message) #the agent_address would be new each␣
→˓time the for loop is run

Agent Message Receiving Code

Here the Agent Actor receives the unique value_estimate that the Institution sent along with the ubiquitous error
key.

@directive_decorator("receive_value_estimate")
def receive_value_estimate(self, message:Message):

payload_dict = message.get_payload()#returns the payload dictionary that was set by␣
→˓the sender
#we define class variables using the keys of the payload dictionary
self.value_estimate = payload_dict["value_estimate"]
self.error = payload_dict["error"]

Note: self.address_book.select_addresses(selector) is very useful method when sending a slightly unique message
to all Actors of one type (Institution/Agent). Notice, the only aspect of the message that changed for each iteration
of the for loop was the value_estimate. Moreover, in this example, we assume that all Agent Actors have a @di-
rective_decorator(“receive_value_estimate”) in their AgentClass. Although, this shouldn’t be a problem if all Actors
belong to the same AgentClass, however, if there is more than one AgentClass defined in the mes folder as well as
referenced in the config file, each AgentClass would need to have a @directive_decorator(“receive_value_estimate”)
method. Otherwise, mTree would through an ERROR.

self.address_book.broadcast_message(selector, message)

This method broadcasts or sends a message to all entries in the Actor’s personal address_book that the selec-
tor agrees with. Unlike self.address_book.select_addresses(selector), which returns a list of addresses, the self.
address_book.broadcast_message(selector, message) method does the message sending for the Actor.

Input: selector(dict), message

The selector is a dictionary that can only have one of the following key and value pairs.

2.4. Reference 39

mTree, Release 1.0

Table 2: Selector
key value
“address_type” “agent”/”institution”
“short_name” “file_name.ActorClass instance(int)”

The purpose of the selector is to help address_book object select specific mTree addresses from the entries that have
the same value as the selector inside their description dictionaries.

The message argument takes in the message object that needs to be passed to all entries that the selector applies to.

Output: None

This method doesn’t return anything, however, performs the important function of sending the message, that is sub-
mitted as an argument, to all the address_book entries that the selector applies to.

Example

The following code should send a message to all Agent Actor entries present in the address_book

new_message = Message()#we create a new message object
new_message.set_sender(self.myAddress)
new_message.set_directive("receive_message") #the directive_method where this message␣
→˓will be received
payload = None #you can choose this to be anything
new_message.set_payload(payload)

selector = {"address_type": "agent"} # you can change the selector

self.address_book.broadcast_message(selector, new_message)#take note of how we pass the␣
→˓selector and the message object

Note: The self.address_book.broadcast_message(selector, message) is useful when you want to send the same message
(no variation) to all Actors of one type (Institution/Agent).

Example: Common Value Auction

The code example below is from Common Value Auction section in Learning Paths. In this portion, the Environ-
ment Actor sends the Agent Actor their endowment which is constant for all Agents in the system. As a result,
self.address_book.broadcast_message(selector, message) becomes valuable because we are sending the same message
to all Agent Actors.

Environment Code

#self.provide_endowment is a method that gets run in the start_environment method

def provide_endowment(self):
endowment = 30 #Agent endowment

#Defining a Message
new_message = Message() #declare message
new_message.set_sender(self.myAddress) # set the sender of message to this actor
new_message.set_directive("set_endowment") #set the directive
payload_dict = {"endowment": endowment}
new_message.set_payload(payload_dict) #set the payload as the payload_dict we␣

→˓defined in the line above
(continues on next page)

40 Chapter 2. Contents

mTree, Release 1.0

(continued from previous page)

#Broadcasting the message using the AddressBook
selector = {"address_type": "agent"}
self.address_book.broadcast_message(selector, new_message) #this will send a message␣

→˓to all Agent Actors

#Or the following should also work
#self.address_book.broadcast_message({"address_type": "agent"}, new_message)

Agent Message Receiving Code

#this is a directive inside the AgentClass
@directive_decorator("set_endowment")
def set_endowment(self, message: Message):

payload_dict = message.get_payload() #we access the payload/content of the message␣
→˓that was sent

environment_address = message.get_sender() #we access the environment's address

self.endowment = payload_dict["endowment"]#we create a class variable self.endowment␣
→˓and set it equal to the amount sent by the environment

2.4.6 Logs

Logging is a way to output important information from a simulation in order to keep track of what the code is doing at
various steps, as well as collect data for analysis.

There are 2 types of logging that mTree allows -

1. Experiment Logging - Appears in the .log files.

2. Data Logging- Appears in the .data files.

Each run of an mTree config file creates a .log file which gets placed inside the logs folder inside your simula-
tion_folder (where your config folder and mes folders are stored).

Note: If you have already created a logs folder prior to running your mTree simulation, your .log and .data files
should appear inside it. Nevertheless, even if you haven’t created one, mTree will generate a logs folder for you and
place those files inside it.

Note: Although, each run of a config file creates a .log file, however, a .data file only gets created when one of the
ActorClasses uses the self.log_data(content) method somewhere in one of its methods.

2.4. Reference 41

mTree, Release 1.0

Fig. 30: Inside the logs folder

Naming

Each .log and .data file associated with a config file get named the following way -

The following figure shows how different runs of the same config file are named -

Experiment Logging

Experiment Logging can be used to keep track of

1. The messages Actors send or receive.

2. How received messages change the internal state of the Actors.

As a result, Experiment Logging can be used to monitor whether our simulation/experiment is behaving according
to our microeconomic system design.

self.log_message(content)

The self.log_message(content) is a method that gets setup for each Actor during initialization and allows them
to output information from various points within the ActorClass to the .log.

Since mTree suppresses print() statements, self.log_message(content) is the closest method we have to mon-
itor how the internal state of the Actors is changing in response to received messages.

The self.log_message(content) logs to the .log file present in the logs folder.

Input: content(any python data type)

42 Chapter 2. Contents

mTree, Release 1.0

Fig. 31: Each run of the same config file should generate its own set of .log and .data files

Fig. 32: Snapshot of the files that get generated inside the logs folder.

2.4. Reference 43

mTree, Release 1.0

self.log_message(content)method can take in all arguments types that a print() function is equipped to handle.

Warning: One of the common mistakes people make while using self.log_message(content) is treating it
exactly like a print() function and passing more than one argument to it. For instance, if you pass 2 arguments
to a print("a", "b") function, print() treats the comma in between “a” and “b” as space and outputs - a b.
However, if you run self.log_message("a", "b") you will get an ERROR because the method only takes in
a single argument and you have tried to pass in two.

self.log_message(f"Anything that can be printed can be logged")

Output

The output generated in your .log file should look like the following.

1649966264.0786786 Anything that can be printed can be logged

Fig. 33: A .log file entry

Each time self.log_message(content) gets called by one of the Actors, there is a new entry in the .log file on a
new line. The first part of the entry is the UTC timestamp of when the self.log_message(content) was called,
the second part (separated by a space) is the content you passed into the method.

Log File

The .log file for each run of an mTree config file should appear in the logs folder.

Structure

The first few lines of the .log file that gets generated from the simulation run consists of the json dictionary that was
used as the configurations dictionary for the run.

The second part of the .log file consists of a series of timestamped log outputs made by both mTree and
self.log_message(content) calls (inside different message passing/receiving Actors).

44 Chapter 2. Contents

mTree, Release 1.0

Fig. 34: This is the same as the json dictionary inside the config file you ran.

2.4. Reference 45

mTree, Release 1.0

mTree logging

mTree logs each time an Actor enters and exits a directive method. In other words, mTree logs each time an Actor -

1. Receives a message - denoted by entering the directive method where the message was sent to.

2. Is finished processing the message - denotend by exiting the directive method where the message was sent to.

mTree logging also informs us who (short_name) received the message as well.

The following figure evaluates how an Institution Actor logs when a message is sent to it by the Environment.

The entry and exit method can be a good way to keep track of what messages are being sent and whether they were
processes or not. For instance, if a message is never received by an Actor, then there should be not trace of an entry log
similar to the once above inside the .log file. Similarly, if a message is received, but somewhere inside the directive a
python error occurs, then, firstly, mTree should log the error, secondly, there should be no trace of the exit log.

Note: For clarity purposes, we have shown the entry and exit statements by mTree one after the other. However,
since mTree has a lot of concurrent actors logging to the .log file, it is possible that these statements are far apart and
have multiple log entries made by other Actors in between. Regardless, the order of the statements should not change,
meaning, the entry statement should still be observed before the exit statement.

Actor logging

Actor logging refers to the logging done by different Actors using the self.log_message(content) method inside the
Actor. This can be used in conjunction with that mTree does automatically for both debugging the code and tracking
whether internal states of Actors is changing according to our design.

Example

The following code shows the log output generated by the Institution Actor when it receives a copy of the addresses
from the Environment and adds it to its own version of address_book. During the process, we try to track the following
values -

• self.address_book.get_addresses() - before and after self.address_book.merge_addresses(addresses) is called.

• message.payload() - The content of the message that gets sent.

• message.get_sender() - The mTree address of the message sending Actor.

46 Chapter 2. Contents

mTree, Release 1.0

We include the Environment Actor code that does the message sending but we only display the log statements made
by the Institution Actor for clarity.

Environment Code Environment sends the addresses dictionary to Institution in start_environment directiv.

from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

@directive_enabled_class
class EnvironmentClass(Environment):

def __init__(self):
pass

@directive_decorator("start_environment")
def start_environment(self, message: Message):

selector = {"short_name": "institution_file.InstitutionClass 1"}#short_name␣
→˓selector, helps in the select_addresses() method

institution_address = self.address_book.select_addresses(selector) #extract the␣
→˓institution address from the address_book object

#self.log_message(f"institution_address = {institution_address}")
address_dictionary = self.address_book.get_addresses() #extract all the address_

→˓book entries

new_message = Message() #define a message object
new_message.set_sender(self.myAddress) #set sender to the Actor's personal address
new_message.set_directive("institution_message")#set directive
new_message.set_payload(address_dictionary) #set the payload to the address_

→˓dictionary we define above
self.send(institution_address, new_message)

Institution Code Institution receives the addresses dictionary and adds it to its address_book object using
self.address_book.merge_addresses(addresses). We track the message attributes that are received and more specifi-
cally the

from mTree.microeconomic_system.environment import Environment
from mTree.microeconomic_system.institution import Institution
from mTree.microeconomic_system.agent import Agent
from mTree.microeconomic_system.directive_decorators import *
from mTree.microeconomic_system.message import Message
import math
import random
import logging
import time
import datetime

(continues on next page)

2.4. Reference 47

mTree, Release 1.0

(continued from previous page)

@directive_enabled_class
class InstitutionClass(Institution):

def __init__(self):
pass

@directive_decorator("institution_message")
def institution_message(self, message:Message):

environment_address = message.get_sender() #since environment is the message␣
→˓sender, we can extract its address this way.

address_dictionary = message.get_payload() #the Environment sends the address_
→˓dictionary (obtained using self.address_book.get_addresses())

#Logging Initial State
self.log_message(f"Institution: environment_address = {environment_address}\n" #␣

→˓the environment's address
f"Institution: address_dictionary = {address_dictionary}\n" #␣

→˓the address_dictionary it received from the Environment
f"Institution: Initial self.address_book.get_addresses = {self.

→˓address_book.get_addresses()} ") #logs the current addresses it has in its possession

self.address_book.merge_addresses(address_dictionary)#we merge the addresses we␣
→˓received with our own address_book object

#Logging Final State
self.log_message(f"Institution: Final self.address_book.get_addresses = {self.

→˓address_book.get_addresses()}")

.log Output

We have listed the log outputs generated as a result of the institution_message directive.

1650482151.553274 Institution (institution_file.InstitutionClass 1) : About to enter␣
→˓directive: institution_message
1650482151.556913 Institution: environment_address = ActorAddr-(T|:41851)
Institution: address_dictionary = {'institution_file.InstitutionClass 1': {'address_type
→˓': 'institution', 'address': <thespian.actors.ActorAddress object at 0x4018103c10>,
→˓'component_class': 'institution_file.InstitutionClass', 'component_number': 1, 'short_
→˓name': 'institution_file.InstitutionClass 1'}, 'agent_file.AgentClass 1': {'address_
→˓type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103b20>,
→˓'component_class': 'agent_file.AgentClass', 'component_number': 1, 'short_name':
→˓'agent_file.AgentClass 1'}, 'agent_file.AgentClass 2': {'address_type': 'agent',
→˓'address': <thespian.actors.ActorAddress object at 0x4018103310>, 'component_class':
→˓'agent_file.AgentClass', 'component_number': 2, 'short_name': 'agent_file.AgentClass 2
→˓'}, 'agent_file.AgentClass 3': {'address_type': 'agent', 'address': <thespian.actors.
→˓ActorAddress object at 0x4018103340>, 'component_class': 'agent_file.AgentClass',
→˓'component_number': 3, 'short_name': 'agent_file.AgentClass 3'}, 'agent_file.
→˓AgentClass 4': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress␣
→˓object at 0x4018101880>, 'component_class': 'agent_file.AgentClass', 'component_number
→˓': 4, 'short_name': 'agent_file.AgentClass 4'}, 'agent_file.AgentClass 5': {'address_
→˓type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018101130>,
→˓'component_class': 'agent_file.AgentClass', 'component_number': 5, 'short_name':
→˓'agent_file.AgentClass 5'}}

(continues on next page)

48 Chapter 2. Contents

mTree, Release 1.0

(continued from previous page)

Institution: Initial self.address_book.get_addresses = {}
1650482151.5645256 Institution: Final self.address_book.get_addresses = {'institution_
→˓file.InstitutionClass 1': {'address_type': 'institution', 'address': <thespian.actors.
→˓ActorAddress object at 0x4018103c10>, 'component_class': 'institution_file.
→˓InstitutionClass', 'component_number': 1, 'short_name': 'institution_file.
→˓InstitutionClass 1'}, 'agent_file.AgentClass 1': {'address_type': 'agent', 'address':
→˓<thespian.actors.ActorAddress object at 0x4018103b20>, 'component_class': 'agent_file.
→˓AgentClass', 'component_number': 1, 'short_name': 'agent_file.AgentClass 1'}, 'agent_
→˓file.AgentClass 2': {'address_type': 'agent', 'address': <thespian.actors.ActorAddress␣
→˓object at 0x4018103310>, 'component_class': 'agent_file.AgentClass', 'component_number
→˓': 2, 'short_name': 'agent_file.AgentClass 2'}, 'agent_file.AgentClass 3': {'address_
→˓type': 'agent', 'address': <thespian.actors.ActorAddress object at 0x4018103340>,
→˓'component_class': 'agent_file.AgentClass', 'component_number': 3, 'short_name':
→˓'agent_file.AgentClass 3'}, 'agent_file.AgentClass 4': {'address_type': 'agent',
→˓'address': <thespian.actors.ActorAddress object at 0x4018101880>, 'component_class':
→˓'agent_file.AgentClass', 'component_number': 4, 'short_name': 'agent_file.AgentClass 4
→˓'}, 'agent_file.AgentClass 5': {'address_type': 'agent', 'address': <thespian.actors.
→˓ActorAddress object at 0x4018101130>, 'component_class': 'agent_file.AgentClass',
→˓'component_number': 5, 'short_name': 'agent_file.AgentClass 5'}}
1650482151.5661018 Institution (institution_file.InstitutionClass 1) : Exited␣
→˓directive: institution_message

Based on the output we can see that the message was properly processed according to our code because of the en-
try logging and exit logging**(first and last lines respectively). We were also able to check that the payload
(line number 3 of the code-block) was not **None. Finally, we were able to monitor the state change of the
self.address_book.get_addresses() in line 4 and the change that takes place in line 5.

Data Logging

self.log_data(content)

Data File

Interpret into Jupyter notebook

Simple suggestions on how to log data using dictionaries and little code on how pandas could be used to read the
dataframe.

2.4.7 Error Handling

Directive name error

2.4.8 mTree Simulation State

2.5 Contribute

under development . . .

2.5. Contribute 49

mTree, Release 1.0

2.6 Learning Paths

Under development. . .

2.6.1 Tatonnement

2.6.2 Sealed Bid Auction

2.6.3 Ascending Price Auction

2.6.4 Descending Price Auction

2.6.5 Common Value Auction

50 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

51

	Novice Path
	Contents
	Installation
	Installing Docker Desktop
	Installing mTree
	mTree Container Setup
	Container Options
	Start
	Stop
	Restart
	Delete
	Open Shell

	Quick Start Guide
	Cloning mTree_auction_examples
	Running mTree_auction_examples
	mTree_auction_examples container setup
	Running mTree_auction_examples container
	Common Value Auction
	File Structure
	Running common_value_auction simulation
	How to know your simulation has finished running?
	Simulation Results
	logs

	Checking for Errors
	Quitting
	Conclusion

	Quick Build
	Reference
	Theory of Operations
	messages
	start_environment
	How to send a message
	Directives / Receiving Messages

	Actor Description
	Imports
	Necessary Imports
	Additional Imports
	General Methods and Capabilities (better name under way)
	short_name
	Environment
	Institution
	Agent

	config folder
	config file
	mTree use
	Referencing different actors
	Environment
	Institution
	Agents

	Simulation Properties/ self.get_properties()
	Accessing Properties

	address book
	How to access the address_book
	Structure
	Methods
	self.address_book.get_addresses()
	self.address_book.merge_addresses(addresses)
	self.address_book.get_agents()
	self.address_book.get_institutions()
	self.address_book.num_agents()
	self.address_book.num_institutions()
	self.address_book.select_addresses(selector)
	self.address_book.broadcast_message(selector, message)

	Logs
	Naming
	Experiment Logging
	self.log_message(content)
	Log File
	Structure
	mTree logging
	Actor logging
	Example

	Data Logging
	self.log_data(content)
	Data File
	Interpret into Jupyter notebook

	Error Handling
	Directive name error

	mTree Simulation State

	Contribute
	Learning Paths
	Tatonnement
	Sealed Bid Auction
	Ascending Price Auction
	Descending Price Auction
	Common Value Auction

	Indices and tables

